
BACHELORARBEIT

Titel

Evaluation of Responsive Images
Solutions for the Web

Verfasser

Martin Plattner

angestrebter akademischer Grad

Bachelor of Science (BSc)

Wien, August 2015

Studienkennzahl lt. Studienblatt: 033 526
Studienrichtung lt. Studienblatt: Wirtschaftsinformatik
Betreuer: Univ.-Prof. Mag. Dr. Hans-Georg Fill, Privatdoz.

i Abstract

Abstract

The success of smartphones and tablets has faced web developers with a big chal-
lenge. They had to adapt their workflow and create more flexible websites to pro-
vide a good user experience regardless of the device. Ethan Marcotte's Responsive
Web Design approach solved the issue and fundamentally changed web design.
However, Responsive Web Design does not sufficiently address images. The main
issue is that the same image files are delivered to all devices. This introduces a big
overhead when large, desktop-optimized images are served to small devices like
smartphones. The result is an increased page loading time and thus, a poor user ex-
perience. Several approaches have been introduced to solve this issue. This work
evaluates six responsive images approaches. The aim is to provide a guideline for
selecting a responsive images solution. Software architects and developers should be
supported in the decision making process when planning and implementing a web
project. An evaluation framework was developed to ensure a formal and compre-
hensible evaluation. The framework consists of seven functional requirements, six
non-functional requirements and three system prerequisites. The results clearly
show that the native HTML5 responsive images solution outperforms the other so-
lutions. However, the other solutions or a combination might be a sensible option
for certain use cases. The results were used to select one solution and use it to cre-
ate a prototype of a travel website using fullscreen images. This was done to pro-
vide a real-world example. The prototype confirmed the results of the evaluation.
The native HTML5 responsive images solution was successfully implemented and it
was possible to provide fallbacks for older and unsupported browsers.

ii Acknowledgments

Acknowledgments

The creation of this thesis took almost a year of work. Many people supported me
during this stressful and intense time. I would like to thank the following persons
who supported me. Without them, this work would not have been possible.

Huge thanks go to Dominik Bork, the supervisor of this work. Our regular
meetings and phone conversations always gave me very valuable input. His exper-
tise on how to write academic works was extremely helpful. Whenever I was stuck
he made time and offered good advice which got me back on track. Overall, his
motivating and appreciative nature made the collaboration a pleasure.

Big thanks also go to Wolfgang Klas for making time to discuss my thesis pro-
posal and taking care of the formal aspects to make this work applicable for my
Media Computer Science program.

Next, I want to thank my friends Lukas Lottersberger, Michael Oppermann,
Oliver Spies and Patrick Riley for many helpful discussions. Their web develop-
ment background and expertise allowed me to get very profound feedback.

I would also like to thank all the people in the community for answering my
questions online. It is incredible how many extremely skilled people share their
knowledge either by answering questions directly or publishing articles on their
blogs.

Great thanks also go to my parents and sisters for their support while going
through a hard time themselves. They have emotionally and financially supported
me not only during my work on this thesis, but also all-along my studies in Vienna
and Stockholm.

Finally, thanks go to my lovely girlfriend Lisa for her incredible support. She al-
ways encouraged me and had a lot of patience while I was busy working on this
thesis.

iii Table of Contents

Table of Contents

Abstract... i

Acknowledgments..ii

Index of Abbreviations..v

Index of Tables...vi

Index of Listings..vii

Index of Figures...viii

1 Introduction..1

1.1 Motivation...2

1.2 Research Approach...3

1.3 Outline of Contents...3

2 Background...4

2.1 Evolution of the Web..4

2.2 Web Technologies...5
2.2.1 Hypertext Markup Language...7
2.2.2 Cascading Style Sheets...8
2.2.3 JavaScript...11
2.2.4 Hypertext Transfer Protocol..12
2.2.5 Browsers...14

2.3 Diversity of Devices...18
2.3.1 Desktops and Laptops..19
2.3.2 Mobile Phones..20
2.3.3 Tablets..21
2.3.4 TVs...22
2.3.5 Others...22

2.4 Responsive Web..23
2.4.1 Evolution of Design..24
2.4.2 Responsive Web Design...26
2.4.3 Meaning of Responsiveness..28

2.5 Images on Websites...29

iv Table of Contents

3 Responsive Images...32

3.1 Introduction..32

3.2 Technical Foundations...34
3.2.1 Server-Side Solutions..35
3.2.2 Client-Side Solutions..36

3.3 Evaluation Framework...37
3.3.1 Selection of Solutions...37
3.3.2 Evaluation Criteria...38
3.3.3 Resulting Evaluation Framework...43

3.4 Evaluation of Solutions..44
3.4.1 Overview...44
3.4.2 Solution 1: User Agent Detection..44
3.4.3 Solution 2: Cookies...50
3.4.4 Solution 3: HTTP Client Hints..55
3.4.5 Solution 4: CSS Background Images..61
3.4.6 Solution 5: JavaScript..68
3.4.7 Solution 6: Native HTML5..75

3.5 Evaluation Results...80
3.5.1 Overview...80
3.5.2 Discussion...81

4 Proof of Concept: Travel Website using Responsive Fullscreen
Images...85

4.1 Introduction..85

4.2 Fullscreen Images..85
4.2.1 Motivation..86
4.2.2 Issues..86
4.2.3 Approaches...87

4.3 Implementation of a Prototype..91
4.3.1 Overview...91
4.3.2 File Structure...93
4.3.3 Responsive Fullscreen Images..95
4.3.4 Responsive User Interface..97
4.3.5 Fallbacks and Workarounds...100

4.4 Discussion..101

5 Conclusion...103

References..104

v Index of Abbreviations

Index of Abbreviations

AJAX....................Asynchronous JavaScript and XML
API.......................Application programming interface
CDN......................Content Delivery Network
CPU......................Central Processing Unit
CSS.......................Cascading Style Sheets
DIP.......................Device Independent Pixel
DOM.....................Document Object Model
DPI.......................Dots per Inch
dppx......................Device pixel per px (Note: px refers to CSS pixel)
DPR......................Device Pixel Ratio
FUHD...................Full Ultra High Definition
GIF.......................Graphics Interchange Format
GUI.......................Graphical User Interface
HiDPI....................High Dots per Inch
HTML...................Hypertext Markup Language
HTTP....................Hypertext Transfer Protocol
JP(E)G..................Joint Photographic (Experts) Group
JS..........................JavaScript
Mbps.....................Megabit per second
MIME....................Multipurpose Internet Mail Extensions
PHP......................PHP: Hypertext Preprocessor
PNG......................Portable Network Graphics
PoC.......................Proof of Concept
PPI........................Pixels per Inch
RESS.....................Responsive Design with Server Side Components
RFC......................Requests for Comments
RICG.....................Responsive Images Community Group
RWD.....................Responsive Web Design
SoC........................Separation of Concerns
SVG......................Scalable Vector Graphics
URI.......................Uniform Resource Identifier
URL......................Uniform Resource Locator
W3C......................World Wide Web Consortium
WHATWG............Web Hypertext Application Technology Working Group
WURFL................Wireless Universal Resource FiLe
XML......................Extensible Markup Language
XSS.......................Cross-Site-Scripting

vi Index of Tables

Index of Tables

Table 1: Overview of functional requirements...43

Table 2: Overview of the non-functional requirements...43

Table 3: Overview of the system prerequisites..43

Table 4: Overview of the selected solutions..44

Table 5: Examples of HTTP User-Agent headers...45

Table 6: Evaluation results of the functional requirements of Solution 1..48

Table 7: Evaluation results of the non-functional requirements of Solution 1.................................49

Table 8: Evaluation results of the system prerequisites of Solution 1..49

Table 9: Evaluation results of the functional requirements of Solution 2..53

Table 10: Evaluation results of the non-functional requirements of Solution 2...............................54

Table 11: Evaluation results of the system prerequisites of Solution 2..54

Table 12: Evaluation results of the functional requirements of Solution 3......................................59

Table 13: Evaluation results of the non-functional requirements of Solution 3...............................60

Table 14: Evaluation results of the system prerequisites of Solution 3..60

Table 15: Evaluation results of the functional requirements of Solution 4......................................66

Table 16: Evaluation results of the non-functional requirements of Solution 4...............................67

Table 17: Evaluation results of the system prerequisites of Solution 4..67

Table 18: Evaluation results of the functional requirements of Solution 5......................................73

Table 19: Evaluation results of the non-functional requirements of Solution 5...............................74

Table 20: Evaluation results of the system prerequisites of Solution 5..74

Table 21: Evaluation results of the functional requirements of Solution 6......................................78

Table 22: Evaluation results of the non-functional requirements of Solution 6...............................79

Table 23: Evaluation results of the system prerequisites of Solution 6..79

Table 24: Overall evaluation results of the functional requirements..80

Table 25: Overall evaluation results of the non-functional requirements...80

Table 26: Overall evaluation results of the system prerequisites..80

Table 27: File structure of the prototype..93

vii Index of Listings

Index of Listings

Listing 1: An example of a simple HTML document..8

Listing 2: A CSS declaration to set the font-size of all h1 elements to 12px.....................................9

Listing 3: More CSS declarations to add formatting to the HTML document of Listing 1..............9

Listing 4: A HTTP request from the client and the HTTP response from the server.....................13

Listing 5: A CSS media query to change from a 3- to a 1-column layout..27

Listing 6: The viewport <meta> tag to set the layout viewport of (mobile) browsers......................27

Listing 7: An example of the HTML tag...29

Listing 8: CSS declaration of the fluid images technique..32

Listing 9: Apache configuration to forward image requests to a custom script...............................46

Listing 10: Using user agent detection to serve different images based on the device category......47

Listing 11: Using the Mobile Detect PHP library for device and browser detection.......................47

Listing 12: JS code to store a cookie named resolution and the value of the screen size................51

Listing 13: The above JS snippet, but enhanced by storing the client's DPR as well.....................51

Listing 14: Using CSS media queries to initiate requests to transmit the screen width and set a
cookie..52

Listing 15: PHP Code to retrieve HTTP headers sent by the client..57

Listing 16: A sample HTTP request for an image with enabled HTTP Client Hints.....................57

Listing 17: A sample response to Listing 16, with the Content-DPR and Vary headers set...........58

Listing 18: A simple example of a CSS background image...62

Listing 19: Media queries to implement resolution-based selection with CSS background images. 64

Listing 20: Target DPR=2 screens using prefixed media feature versions for different browsers.. .64

Listing 21: Using media queries to implement DPR-based selection with CSS background images.
..65

Listing 22: Using media queries to target monochrome screens in landscape mode........................65

Listing 23: Two JS-only and one jQuery method to set the src attribute of an image....................69

Listing 24: Using data attributes to store different DPR-based image versions and apply them
using jQuery...69

Listing 25: Testing different JS properties related to the viewport and the device's screen...........71

Listing 26: HTML tag with an embedded transparent 1×1 pixel GIF image using data URI
scheme..71

Listing 27: Evaluating media queries and binding a function to evaluation changes using JS........72

Listing 28: Binding a function to the resize event to react to changes of the viewport size............72

Listing 29: Using the srcset attribute to provide different image versions based on the DPR........76

Listing 30: Implementing viewport-based selection using with srcset and sizes attributes.. .76

viii Index of Listings

Listing 31: Implementing art direction using the <picture> and <source> tags..............................77

Listing 32: Combining art direction and DPR-based selection using the <picture> and <source>
tags...77

Listing 33: Implementing a selection based on image formats using the <picture> and <source>
tags...78

Listing 34: Implementing a fullscreen background image using CSS background images...............88

Listing 35: Implementing a fullscreen image using the tag and manual positioning using
CSS...89

Listing 36: Implementing a fullscreen image using the tag and the object-fit CSS property.
..90

Listing 37: The basic HTML structure of the prototype. (index.php)...94

Listing 38: The associative array which holds the destination data. (destination_data.php).........94

Listing 39: Prototype's implementation of responsive images using the srcset attribute................95

Listing 40: Prototype's implementation of fullscreen images using the object-fit property.............95

Listing 41: Positioning the image to using object-position to control which areas are cropped......96

Listing 42: Conceptual working of the loadNextImage function to load and display the next
destination..97

Listing 43: CSS media query to adapt the information box to narrow viewports...........................98

Listing 44: Binding click, keydown and swipeleft events to the <body> element to initiate the
loading of the next image...99

Listing 45: Using the Fullscreen API with the prefixed functions of all major browser vendors.. . .99

Listing 46: Using Modernizr to conditionally call the picturefill function if no srcset attribute
support was detected..100

Listing 47: Set the with and height of an image to cover the viewport...101

Listing 48: Hide the “Go Fullscreen” link based on the Modernizr feature detection result..........101

Index of Figures

Figure 1: Comparison of a DPR=1 screen (left) and HiDPI screens with a DPR of 2 respectively
4. [77]..18

Figure 2: The art direction use case: A different (cropped) image is used for smaller
screens. [148]...39

Figure 3: Fluid image technique (left), scaling while ignoring the aspect ratio (middle), and
correct scaling while preserving the aspect ratio, but with cropped areas.......................................87

Figure 4: Screenshot of the homepage of the prototype..91

Figure 5: Screenshot of the main view of the prototype on a desktop monitor...............................92

Figure 6: The result of using object-position to control the cropping process.................................96

Figure 7: Screenshot of the main view of the prototype on a narrow viewport, eg. a smartphone. 98

1 Introduction

1 Introduction

The Web is the world's biggest information network, used by billions of people. For
a long time, the environment of a user was pretty predictable and stable. The main
device to access the Web was a desktop computer, having a big screen and usually
a stable Internet connection. Web designers created websites with this environment
in mind. They assumed a certain minimum resolution, eg. 1024×768 pixels, and op-
timized websites for such screens. This resulted in rather static and inflexible web-
sites – which was sufficient, given that the environment was static as well. How-
ever, this has changed. The transition began with the introduction of the first Ap-
ple iPhone in 2007. It marked the beginning of the ongoing smartphone boom. New
models were released in increasingly smaller intervals. The rise of smartphones was
followed by the success of tablets. It started in 2010, again initiated by Apple with
the release of the first iPad. The device landscape has been growing ever since.
Wearables like watches and even glasses are on the verge of becoming the next
hype. The new devices completely changed the user environment. Today, the web
is less static and predictable than ever before. The once common desktop monitor
can now be a watch, a smartphone, a tablet, or a TV screen – and this list is likely
to grow. Instead of being bound to the office-like setup of desktop computers, users
can now be online everywhere: on airplanes, while commuting to work on the
metro, or at home on the couch. [1]

“The long and short of it is that we’re designing for more devices, more
input types, more resolutions than ever before. The web has moved beyond
the desktop, and it’s not turning back.” [1, p. 8]

– Ethan Marcotte (2010)

This change presented web developers with a big challenge. Their old longstanding
approaches were not sufficient anymore. They had no choice but to adapt their
workflow. The aim was to create more flexible websites that work on different de-
vices. They came up with several approaches. The most sustainable is Responsive
Web Design (RWD), which was introduced by Ethan Marcotte in 2010. It marked
the beginning of a new era of web design, the responsive web movement. Marcotte
used already available components – namely Flexible Grid-based Layouts, CSS Me-
dia Queries and Flexible Media – and combined them in a new and innovative way.
The technique allows to create flexible websites which adapt automatically to the
device used to access them. [1]

2 Introduction

1.1 Motivation

The motivation for reviewing responsive images approaches is diverse. At the most
basic level, images are great for many reasons. They allow to very effectively con-
vey information and knowledge. As early as 1911, journalist Arthur Brisbane rec-
ommended “Use a picture. It's worth a thousand words.” [2]. Images also serve an
aesthetic purpose and make designs look appealing [3, p. 40]. That said, it is impor-
tant that images are presented as clearly and efficiently as possible on whatever de-
vice they are displayed on.

However, the motivation for responsive images is rather technical. The RWD
approach addresses images using the fluid images technique. It causes images to
adapt to the size of its parent element and be more flexible. However, the same im-
age files are delivered to all devices. On the client, the images are (down-)scaled to
fit the screen. As a result, high-resolution and desktop-optimized images are deliv-
ered to small devices like smartphones. This is far from ideal and introduces a lot
of overhead as the large image is downscaled on the client anyway. This overhead
significantly extends the loading time of websites and thus, negatively affects the
user experience. As of July 2015, the total size of the average website is around 2.2
megabytes. More than 1.3 megabytes or 63% thereof are images [4]. A test by Tim
Kadlec in 2013 showed that delivering device-optimized images can reduce the im-
age size of by to 72% [5]. These savings can shorten the page load time by tens of
seconds when being on a slow mobile Internet connection. Thus, what developers
want is to deliver different image versions depending on the device of the user.
This is just one of many use cases for responsive images. More use cases will be
covered in Section 3. Web developers introduced several approaches to solve the is-
sues. All of them have advantages and disadvantages. A native browser-imple-
mented solution has been developed and released in 2014. It can be considered the
most sophisticated available approach and is recommended for most use cases.
However, its browser support was bad at the beginning. The situation changed for
the better, but is still not ideal. Until there is widespread browser support for the
native solution, other approaches have to be considered as well. This work reviews
six responsive images approaches. The aim is to provide a guideline and support for
decision making when planning web projects.

A personal motivation of the author for responsive images is the longtime idea
to create a travel website using fullscreen images. Fullscreen images cover the en-
tire screen of the device and the above mentioned overhead is most evident for
such big images. Thus, an evaluation of the available approaches seemed sensible
before starting with the implementation. The entire idea and its prototypical im-
plementation is covered in detail in Section 4.

3 Introduction

1.2 Research Approach

The first steps were comprised of getting an overview of the research area. Rele-
vant technologies and background information were collected by reviewing litera-
ture. The findings are presented in Section 2. These steps were necessary to con-
duct the following evaluation of responsive images approaches. First of all, the au-
thor tried to select some solutions for evaluation out of the pool of available ap-
proaches. This was done according to predefined selection requirements. It was
found to be helpful to know the target solutions before planning the evaluation.
The actual evaluation was performed using an evaluation framework. The frame-
work was developed to ensure a formal and comprehensible proceeding. First, use
cases for responsive images were composed. These use cases were transformed into
functional requirements. Additionally, non-functional requirements and system pre-
requisites were chosen for evaluation. The result was an evaluation framework with
seven functional requirements, six non-functional requirements and three system
prerequisites. All six selected solutions were evaluated in an order that helps under-
standing. The evaluation was performed by reviewing literature and doing sample
implementations. The results were used to select an approach for the following pro-
totypical implementation of a travel website. The aim of the proof of concept is to
demonstrate the implementation of future-proof methods.

1.3 Outline of Contents

The following gives an overview of this work's contents and the required knowl-
edge. The target audience of this work is people with a strong IT and web back-
ground. Section 2 explains most of the required knowledge. However, it is out of
the scope of this work to go into great detail. Intermediate skills in web develop-
ment, especially with HTML, CSS, and JS, are most helpful to fully follow the con-
tents. Apart from the Introduction Section, this work has four more main sections.

Section 2, covers the required knowledge to understand this work. It tries to
convey the big picture of the responsive movement. This includes its history, the
underlying technologies and the motivation.

Section 3 comprises the main part of this work. It provides a guideline for re-
sponsive images and covers different approaches. It starts with the basics and the
motivation and then documents the evaluation of six responsive images solutions.
The results are presented at the end together with a following discussion.

Section 4 covers the prototypical implementation of a travel website using
fullscreen images. First, the idea is outlined and three fullscreen images approaches
are introduced. Following next, on approach is selected and combined with a re-
sponsive images approach to implement the prototype.

Section 5 summarizes the findings, proposes a guideline and future research areas.

4 Background

2 Background

This section covers the required background knowledge to understand this work.
The presented topics help to grasp the big picture of the responsive movement and
how it changed the web. Section 2.1 outlines the development of such a big tech-
nology like the web. Section 2.2 covers the essential technologies to create websites
while putting the focus on aspects needed for being responsive. Web developers
should know the currently used devices and their characteristics, which are covered
in Section 2.3. The very relevant Section 2.4 outlines the history, motivation and
implementation of responsive websites using RWD. The Background Section ends
with the Section 2.5, which covers web-relevant aspects of images and sets the
stage for Section 3: Responsive Images.

2.1 Evolution of the Web

Responsive techniques often make use of very new features. Before using them it is
important to check their support by major browsers. To do so, it is helpful to un-
derstand how the web platform as a whole is being developed and enhanced. The
web is one of the biggest and most broadly used technologies. There are many
stakeholders with different aims and needs. It is not an easy task to develop and
enhance such an extensive system.

In 1989, Tim Berners-Lee proposed an information system, which later turned
out the be a great success story known as the World Wide Web (WWW, or just
web). A big problem at the beginning was that there were no standards of what
web browsers should support. Browser vendors had free choice for their implemen-
tation. This led to a fierce competition between individual browsers vendors known
as the time of browser wars. The result were many compatibility issues, with many
features only being supported by one browser. [6]

Tim Berners-Lee encountered these issues by founding the World Wide Web
Consortium (W3C) in 1994. However, it took many more years before the situation
changed for the better. After a long time of arguments and disagreement about
HTML's successor XHTML, various companies like Mozilla, Opera and later Apple
teamed up and founded the Web Hypertext Application Technology Working
Group (WHATWG). Its aim was to create specifications (specs) and further en-
hance the web as a whole, without breaking its backwards compatibility. Eventu-
ally the W3C and the WHATWG agreed to collaborate for a new version of
HTML. The result was called HTML5, which together with CSS3 currently repre-
sent two of the main technologies to create websites. [6]

As of today, the W3C and the WHATWG are the main organizations to set
web standards. They coexist side by side and complement each other. Their goals

5 Background

are similar and their specifications are mostly the same. The W3C specs are consid-
ered as more stable, while the WHATWG ones usually implement the latest tech-
nologies [7]. The specs are developed together with many stakeholders, eg. discus-
sions and feedback from the community and companies. Browser vendors mostly
try to implement the specs, but are not obligated to do so. Instead, they have the
final say. If the specs introduce a new feature but browser vendors decide not to
implement it, the feature might eventually be removed from the spec again. This
also works the other way round. If spec writers are to slow to address an issue, one
or more browser vendors might come up with their own solution. As soon as a
number of web developers start using it, there is no going back without breaking
one of the web's fundamental principles: compatibility. One example is the <meta>
tag to configure the viewport of the browser. The viewport meta tag was intro-
duced by Apple for the first iPhone in 2007 [8]. It is now a de-facto standard and a
small but integral part of RWD.

The web has been evolving for more than 20 years now. When the web was in-
troduced, its requirements were quite limited. Its main purpose was sharing aca-
demic knowledge in a very simple and modest way. The web was designed with
these requirements in mind. Over the years, the web has matured and its require-
ments have steadily increased. Developers wanted to create feature-rich web appli-
cations and websites which are user-friendly. The standardization organizations
tried to address these enhanced requirements by inventing new technologies. It is a
difficult task to enhance a platform which was designed with very limited require-
ments. The open and decentralized development does not always result in the best
possible solutions. Asked which technologies he would remove from the web plat-
form, WHATWG specification editor Ian Hickson put it this way in 2013: “HTML,
JavaScript, DOM, [...] basically anything that anyone uses! The Web technology
stack is a complete mess. The problem is: what would you replace it with? [...]” [7].
This is a tough judgment, but illustrates the big tradeoff of having a web which is
free, open and backwards-compatible, all while being developed by many different
stakeholders. This procedure is the reason for not having one technology which
does it all, but a widespread pool of technologies. [7]

2.2 Web Technologies

Now that we have some background information, we can introduce the three main
client-sided technologies used to build websites:

1. Hypertext Markup Language (HTML) for the semantic markup of the page,
2. Cascading Style Sheets (CSS) for the styling and formatting of a page, and
3. JavaScript (JS) for dynamic interaction with the user and the browser.

6 Background

Many books have been written about each of these technologies and it is out of the
scope of this work to cover each technology in great detail. Therefore, the following
only outlines a minimal foundation in order to understand the following sections.
References which provide a full coverage are given in the respective sub-sections.

Web technologies can be classified as client- or server-side technologies. This
classification is not always definitive, but if a technology does most of its purpose
on the client, its usually client-sided and server-sided otherwise. All of the above-
mentioned technologies are client-sided which means that they are processed on the
client. Before the client can do so, it uses the Hypertext Transfer Protocol (HTTP)
to request the HTML document of the webpage. If it contains any other resources
like CSS, JS or image files, they are requested as well.

In contrast, relevant server-sided technologies to create website are mainly
scripting languages. Common languages are PHP, Ruby and Python. They can be
used to implement server-sided logic, for example to modify the HTML document
before it is served. These programming languages are too complex to be covered in
this work. PHP is used for some examples in the following sections and for the pro-
totype of Section 4. Some basic knowledge of PHP is helpful but the code is mostly
self-explanatory.

People who are new to web development might wonder why there is not just
one technology or language that does it all. The idea of having not just one builds
upon the separation of concerns (SoC) principle. It is a common design principle in
computer science. In the context of the web, it is mainly about separating the
structure of the document (HTML) from its formatting (CSS). This has several ad-
vantages, some of which are also relevant for the later explained responsiveness.
Separating structure and style results in more efficient code and eases its mainte-
nance. Consider that we want to change the styling of headings on our website.
When using SoC, style changes only have to be applied to the CSS file, instead of
having to update every HTML file that contains headings. It also helps accessibility
and device compatibility. As the HTML document contains just plain markup
without any styling, it is easy to exchange the stylesheet. That way, a website's
look and feel can greatly adapt to the needs of the device or the user. This would
be much harder if the actual content and its formatting are tightly coupled to-
gether in the same document using just one technology. [9] A website called the
CSS Zen Garden [10] greatly illustrates the power of separation. On the website
the user can choose from a variety of designs, which are all applied just by chang-
ing the CSS file without touching the HTML code.

After introducing the web and scratching the surface of its technologies, it is
now time to put them into practice and see how they work.

7 Background

2.2.1 Hypertext Markup Language

We start off with HTML because it has been the main language to write web pages
since the early days of the web. The current version is called HTML5. It is defined
in the WHATWG [11] and W3C [12] specifications, which are identical for most
parts. The term HTML5 can be confusing. It is also a buzzword for modern web
development. When used like that it comprises more than just the HTML5 lan-
guage specs, but a set of modern web technologies like several JS Application Pro-
gramming Interfaces (APIs). [13, p. 6]

HTML code can be seen as the skeleton of a webpage. It is used to structure
and semantically outline a document and its contents. This is done by enclosing
content within so called HTML tags or just tags in short. Most tags are comprised
of the starting or opening tag, its content and the ending or closing tag. For tags
without content the closing tag can be omitted, eg. for the line break tag (
).
Both the opening and the closing tag always start and end with angle brackets (<
and >). The closing tag always includes a forward slash (/) after the first bracket
(<). The opening tag can contain one or more attributes to provide additional in-
formation for the element like an ID or the target of a link. Such attributes are
used by some JS-based responsive images solutions to store the URL of various im-
age versions. Tags can be nested to create complex hierarchical structures. The fol-
lowing list outlines some frequently used HTML elements. The list is by no means
complete, but going into every detail of HTML is out of the scope of this work. For
a full coverage of HTML please refer to [13].

1. : The img tag represents an image, whose source is declared in the src
attribute, eg. .

2. <a>: The anchor tag represents a link to another resource. The target is re-
ferred in the href attribute, eg. Go to
Google

3. <div>: The div tag is a general-purpose element with no semantic meaning.
It is often used to apply CSS style rules to the contained content.

4. <h1>, <h2>, …, <h6>: The h1 to h6 tags represent hierarchical headings.
5. <!-- -->: Text between <!-- and --> outlines a comment by the developer

and is ignored by the browser. It can be used to describe and comment
HTML code.

Browsers have default CSS stylesheets which apply some basic styling to tags
according to their meaning. For example, a link (<a>) is displayed in blue and un-
derlined and a headlines (<h1>) are displayed with a big font size and bold per de-
fault. In order to stick to the SoC principle, HTML tags should be applied for their
meaning and not for their (default) style. That said, a <h1> tag should be used to

8 Background

outline its content as a level 1 heading and not to make some arbitrary text appear
in a big font size. This results in semantically correct documents, which are impor-
tant to increase the accessibility. The following listing shows a simple HTML docu-
ment to help understanding.

Assuming that the referenced style.css file does not contain any style informa-
tion, this HTML document looks pretty plain when viewed in a browser. This is
because only the browser's default styles are applied to the elements. The CSS lan-
guage can be used to add some more customized styling and formatting.

2.2.2 Cascading Style Sheets

The work on CSS began already in 1994 to encounter HTML's very limited abili-
ties to style and format content. The first recommendation was CSS version 1
(CSS1). It was released in 1996, CSS2 followed shortly after in 1998. After being in
development for many years, CSS2.1 was released in 2011. While CSS 1 and 2 were
documented in one specification, their successor CSS3 was split up in many differ-
ent modules. Some of these modules have already reached recommendation status,
while others are still in development. Nevertheless, CSS3 is considered to be the
current version as many features are supported by most major browsers. [14, p. 9]

The purpose of CSS is to add formatting, styling and a layout to XML and es-
pecially HTML documents. CSS is very powerful and allows web developers to cus-
tomize the appearance of a webpage in great detail. The syntax of a CSS stylesheet
is simple. It contains one or more style rules, which are comprised of at least one
selector and the following declaration block. Before styles can be applied to HTML

<!DOCTYPE html> <!-- Define that this is a html document. -->
<html> <!-- html section, contains entire document. -->
 <head> <!-- Head section, contains document metadata. -->
 <meta charset="utf-8"> <!-- Set document character encoding to UTF8. -->
 <title>Home | Example Website</title> <!-- The document's title. -->
 <link rel="stylesheet" href="style.css"><!-- A referenced CSS stylesheet. -->
 <script src="script.js"></script> <!-- A referenced JavaScript file. -->
 </head> <!-- End of the head section. -->
 <body> <!-- Body section, this is the actual content. -->
 <header> <!-- header section -->
 <!-- The website's logo with alternative text -->
 <nav id="main-navigation"> <!-- Beginning of the document's navigation. -->
 Home<!-- A link to /, showing as “Home”. -->
 About <!-- A link to about.html, showing as “About”. -->
 </nav> <!-- End of the navigation section. -->
 </header> <!-- End of the header section. -->
 <h1>Welcome to Example Website</h1> <!-- A level 1 headline. -->
 <p>A lot ... of ... text</p> <!-- A paragraph with the main content. -->
 <footer>© Example Company 2015</footer><!-- Footer section with copyright message -->
 </body> <!-- End of the body section. -->
</html> <!-- End of the html section. -->

Listing 1: An example of a simple HTML document

9 Background

elements, the desired target elements have to be selected. As the name suggests, a
CSS selector does exactly that. After elements have been selected, the declaration
block denotes a list of declarations to be applied. A declaration consists of a prop-
erty, followed by a colon (:), followed by the value to apply. Multiple declarations
have to be separated from each other with a semicolon (;). Again, a simple exam-
ple will help understanding. [14, p. 35]

Listing 3 uses CSS to add some formatting to the HTML file of the last section.

Two fundamental concepts of CSS are its cascading and its inheritance model.
The cascade handles conflicts if a CSS property is set to different values by two
declarations targeting the same HTML element. The opposite problem occurs when
no value is set for a certain property. Then the inheritance model tries to deter-
mine the value by traversing up the document looking for the closest parent ele-
ment with the respective property set. If a value can be determined, this value is
inherited from the parent element to the child. [14, pp. 93, 103]

As with HTML, it exceeds the scope of this work to go into great detail about
CSS. Therefore [14] is recommended for further reading. That said, the following
only covers two more aspect which are important for creating responsive websites:
CSS media queries, and CSS units.

CSS media queries are part of CSS3 and allow the developer to apply CSS dec-
larations only if certain conditions are met. These conditions are expressed using
CSS media queries. The details are covered in Section 2.4.2.

They are interpreted as a length and are used to set widths, heights, margins,
font sizes and many other CSS properties. For a long time the most-used unit was

h1 /* This selector selects all h1 elements */
{ /* “{“ opens the declaration block */
 font-size: 12px; /* Sets the font-size to 12px (CSS pixels). */
} /* “}“ closes the declaration block */

Listing 2: A CSS declaration to set the font-size of all h1 elements to 12px.

html, body {
 margin: 0; /* set the outmost margin of the box to zero */
 padding: 0; /* set the margin between the box and its border to zero. */
 font-family: Arial; /* set the font family to Arial. */
 font-size: 0.875em; /* set the font size to 0.875em, which equals 14px (0.875 × 16). */
 it is calculated using the default browser font size (16px). */
}

nav a {
 display: inline-block; /* display each link next to each other */
 padding: 8px; /* add a padding of 8 pixels to the outside of container */
 background-color: #AAAAAA; /* set the background color to a light gray color */
}

Listing 3: More CSS declarations to add formatting to the HTML document of Listing 1.

10 Background

“px” – pixel. It is an absolute unit which gives the designer a lot of control. As we
will see in Section 2.4, the desire to control the design greatly limits the flexibility
of a website. In contrast, relative units like %, em and rem enable the web designer
to set lengths relative to other lengths. This allows very adaptive and flexible de-
signs. The differences will be clearer after going into detail about the relevant units
for this work.

1. px: As said before, pixels are an absolute unit. That means that one pixel
is always one pixel, no matter how big the parent HTML element or the
browser viewport is. It is worth mentioning that the number of pixels set
for a length do not necessarily equal the number of physical pixels used to
display the content. This might sound confusing at first, but there are
good reasons for browsers to behave like that as we will soon see in Section
2.2.5. [15]

2. %: Percent are a relative unit and therefore dependent of another length.
Due to CSS' inheritance model, many properties (eg. font-size) are
inherited from HTML elements to their children. This does also apply
when setting a length in %: the actual value gets calculated by using the
properties' value of the parent element as a reference. A short example will
help understanding: Given that a 500px width <div> tag contains another
<div> tag which is set to a width of 10%, the resulting width of the inner
<div> tag is 50px. If the parent element changes its size, the relative-sized
child will change accordingly as well. This relative sizing method greatly
increases the flexibility and is one of the main parts of RWD, which is
covered in Section 2.4. [15]

3. em: The em unit is a relative unit, which is calculated in relation to the
element's or parent element's font size. A value of 1em equals 100%, 1.5em
equals 150% and so forth. The reference length of an em value depends on
which CSS property it is used with. If an em value is used to set the font-
size property of an element, the unit is relative to the font-size of its
parent element. If any other property than font-size is being set, em are
relative to the font-size of the current element itself. The CSS em unit is
based on the em unit which is used in typography, but both follow a
different definition. [15]

4. rem: The rem unit stands for root em. It is also a relative unit and closely
related to em. The difference to the em unit is the used reference length.
Length set in em are calculated relatively to the font-size of the current or
parent element. In contrast, lengths set in rem are always calculated
relatively to the font-size of the root element of the HTML document,
which is the <html> element itself. Thus, a given root em value resolves the
an equal length in the entire HTML document, no matter which element
or property it being set on. The HTML element has a default font size of

11 Background

16px in all major browsers. This value is changed if a user adjusts the
default font size to his needs in the browser settings. [15]

Relative CSS units are an integral part of creating flexible and responsive web-
sites. Percentages are often used to implement fluid layouts, which are covered in
Section 2.4. The em and rem units help accessibility as they are relative to the
(root) font-size and therefore adapt if a user changes the default font size of the
browser.

Now we learned about HTML to structure a document and CSS to style and
format it. We will now cover the last main client-sided technology to create web-
sites.

2.2.3 JavaScript

JavaScript (JS, also ECMAScript) is a dynamic, object-oriented programming lan-
guage. At the time of writing, JS is the most popular language on GitHub [16]. JS
can be used for many purposes and environments but is most-known for being the
web's client-sided scripting language. Using just HTML and CSS results in rather
static websites. Changing the content or appearance of a page or certain elements
usually requires to reload the entire page. The server can then return a modified
HTML and/or CSS document. JS encounters this inflexibility and can be used to
make websites dynamic (without reloading the page). It is very powerful and pro-
vides a wide range of features to interact with the user, the HTML document, and
the browser. JS uses the Document Object Model (DOM) to represent HTML docu-
ments and their elements as objects to the developer. Using these objects and their
properties, a developer can change many details of the element: its content, appear-
ance and behavior, among many more. JS also allows to dynamically load and dis-
play new content by using Asynchronous JavaScript and XML (AJAX). Back in
the web 2.0 era AJAX used to be a popular buzzword. Today it is an integral tech-
nique of modern web development. It enables the developer to perform HTTP re-
quests without reloading the entire page and thus, adds a lot of flexibility. [17]

As with HTML and CSS, JS is not equally supported by all browsers. Some
browser vendors have introduced their own functions and properties. This caused
developers to write separate code for different browsers, which is inconvenient and
hard to maintain. To encounter this issue and simply coding in general, JS frame-
works can be used. They offer wrapper functions which are compatible across ma-
jor browsers. Under the hood, they use native browser functions or emulate them
with custom code. Additionally, they simplify coding by offering functions for
many common tasks, eg. element selection, DOM manipulation or AJAX requests.
A very popular and powerful framework is jQuery by Google. It is being used on
more than 50% of all websites. For further reading about JS and jQuery, [17] re-
spectively [18] are recommended. [19, p. 98]

12 Background

As mentioned in Section 2.2.1, the HTML5 specs not only describe the HTML
language but also several JS APIs. Some of them are relevant to the responsive
web. The Geolocation API acts as an interface to the device's location services to
determine the location of the user [20]. The Battery Status API provides informa-
tion about the current battery level in percent and remaining time until its empty
[21]. Ambient Light Events can be used to react to the brightness of the user's envi-
ronment [22]. The Screen Orientation API offers functionality to retrieve the orien-
tation of the device, eg. landscape or portrait [23]. All these APIs provide a lot of
information about the user: location, battery level, network connection, brightness
and screen orientation. This data can be used to enhance the user experience of a
website by reacting to the user's environment. In the responsive images context, a
developer might deliver smaller images when the battery is almost empty. Another
JS API relevant to this work is the Fullscreen API [24]. It allows to display a web-
site in the fullscreen mode of the browser without the address bar and other user
interface elements. It is used to enhance the proof of concept in Section 4. [19, p.
107]

A downside of JS is that it can not be relied on as it is not available on every
client. It can be disabled by the user for various reasons. The loading and execu-
tion of JS take time and computational power, which might not be available for ev-
ery user. Other users might disable it because they do not want an enhanced and
fancy user interface for usability or accessibility reasons. Another motive to disable
JS is security. JS can be used to track users or exploit security flaws, eg. using
Cross-Site Scripting (XSS). Beside being manually disabled be the user, JS might
not be supported by the browser at all. This holds true for very old browsers or
lightweight browsers for devices with little computational power, eg. feature
phones. Due to this unreliability, websites should always be created to still work
without JS. This can be achieved by applying the progressive enhancement strat-
egy. Its basic idea is to provide a basic but functional version of the website and
then progressively enhance it while considering the supported features of the
browser, device and user. [25], [26]

2.2.4 Hypertext Transfer Protocol

We have now discussed the client-sided technologies to create websites. The files
containing the HTML, CSS and JS code are stored on a web server and can be re-
quested by a client. The Hypertext Transfer Protocol (HTTP) is used for the com-
munication between the web server and the client. The browser requests a webpage
by sending a HTTP request to the server. Every HTTP request begins with the re-
quest line, which includes the request method and the URL of the requested re-
source. It can be followed by various headers containing additional information.
The server's reply is called a HTTP response. It is made up of a status line indicat-

13 Background

ing the result of the request and can be followed by headers as well. The following
listing shows a typical HTTP request. The arrows of the request (->) and the re-
sponse (<-) are not part of the communication but for the visual separation.

The following covers some aspects of HTTP which are relevant to being respon-
sive. First, we will have a look at the User-Agent header. A user agent is software
which acts on behalf of the user, eg. a web browser. Most browsers include this
header in their requests to a server. This header's content is not standardized but
usually contains the client's operating system, browser version and sometimes addi-
tional information. This information can be used to deliver appropriate images to
the client. The concept of using the User-Agent header to learn more about a client
is known as user agent detection. This approach is used by Solution 1 of the later
on evaluated responsive images solutions. [27, Sec. 5.5.3]

Another useful feature of HTTP are cookies. Cookies allow the web developer to
store small amounts of data within the user's browser. Cookies justifiably have a
bad reputation because they can be used to track users across websites. However,
they also represent an integral part for the functionality of most modern websites
by defeating HTTP's statelessness. A browser can be instructed to store a cookie
from the server-side using the HTTP header Set-Cookie or from the client-side us-
ing JS. After a cookie has been set, it is automatically included in every request to
the same domain. In the responsive images context, cookies can be used to let the
server know about certain device characteristics. This is done by storing device in-
formation in a cookie, which is then sent to the server with every subsequent re-
quest. This method is used in the responsive images Solution 2 in Section 3.4.3. [28]

Furthermore, HTTP supports a mechanism called content negotiation. It is
used to deliver a different or modified version of a resource for the same URL. This
is done using the Accept and Accept-Language headers. The client can supply
these headers to advertise supported and preferred file formats or languages of the

-> GET /index.html HTTP/1.1
 Host: www.example.com
 [blank line at the end of the request]
<- HTTP/1.1 200 OK
 Date: Wed, 22 Jul 2015 16:44:34 GMT
 Content-Type: text/html; charset=UTF-8
 Content-Length: 153
 [blank line to separate headers and content]
 <html>
 <head>
 <title>A Webpage</title>
 </head>
 <body>
 This is a very simple HTML document.
 </body>
 </html>

Listing 4: A HTTP request from the client and the HTTP response from the server.

http://www.example.com/

14 Background

content. For example, Google's browser Chrome advertises its support for Google's
new image format WebP by adding the Internet media type image/webp to its Ac-
cept header. An enhanced implementation of content negotiation is used in Solu-
tion 3 of the evaluated responsive images solutions in this work. [27, Ch. 5.3]

HTTP and most browsers support compressed transfers using the gzip algo-
rithm. It is recommended to configure the web server to compress responses to
speed up loading times. Another method to speed up websites is caching, which can
be done locally by the browser or externally by proxy servers. The basics of both
browser- and proxy-based caching are covered in [29]. Proxy servers are intermedi-
ary hosts between the web server and the client. They can cache HTTP responses
and serve this cached response without consulting the web server again on subse-
quent requests. There are use cases where caching is not desirable, especially for
personalized or sensitive content, eg. when doing online banking. The HTTP speci-
fication provides several headers which can be set by the web server to configure
the behavior of intermediary proxy servers. These headers are also relevant when
deploying the before-mentioned content negotiation mechanism. We learned that
the web server can deliver different resources for the same URL. To make caching
work, it is required to inform the proxy server about how the resources differ and
when to serve which resource. This can be done using the Vary and the Key HTTP
headers. The Vary header indicates which request headers were used to select a re-
source. For example, Vary: Content-Encoding tells the proxy server that different
content is delivered based on the value of the request's Content-Encoding header.
The Vary and Key HTTP headers are not applicable to all responsive images ap-
proaches and not all proxy servers support them. Thus, when using server-sided re-
sponsive images solutions as introduced in Section 3, intermediary caching by
proxy servers might not work. It should be considered to add the Cache-Control:
private header disable intermediary caching at all. This prevents proxy servers
from delivering wrong resources. [27, Sec. 7.1.4], [29], [30, Sec. 13]

2.2.5 Browsers

A web browser, commonly only called browser, is the software to access web pages.
Most common browsers have similar features and graphical user interfaces (GUI),
with an address bar at the top, optionally some toolsbars and the content area
(viewport) below. The most-used browsers are often referred to as major browsers,
which are Chrome, Firefox, Internet Explorer, Opera and Safari. Many developers
create websites with these browsers in mind. However, it should not be forgot that
there are other types of browsers as well. Visually impaired people may use a voice
browser or a braille display. Others may be limited to a very minimal browser due
to slow hardware, eg. on old feature phones. Besides, web pages can also be ac-
cessed using a text-only command line browser or be processed by a computer (also

15 Background

called bot). For all users of these less common user agents it is important that the
content is outlined and presented in an accessible way. This includes semantically
correct HTML code, no dependency on JS and implementation of accessibility fea-
tures. This work mainly focuses on the major browsers, but also addresses accessi-
bility issues when appropriate.

The most-used browsers aggregated for all device categories are Chrome
(45.1%), Safari (13.2%), Internet Explorer (10.8%), Firefox (10.0%), Android
Browser (6.6%), UC Browser (5.6%), Opera (5.5%) and Others (3.2%) [31]. The
UC Browser is not common in western countries, but is the biggest mobile browser
in China. Market shares for different device types are given in the following sec-
tion. The operating system and browser market share data in this work are based
on page hits and were fetched from [31]. Great caution should be applied when
comparing browser market share statistics from different sources. They can greatly
differ due to different methods of measurement, eg. based on unique visitors vs.
page hits, and possibly due to regional differences or target audiences with prefer-
ences for certain browsers. [32]

Browsers internally use a layout engine to parse and render web pages. Popular
engines are Gecko, used by Firefox; Trident, used by Internet Explorer; WebKit,
used by Safari; and Blink, a fork of WebKit used by Chrome and Opera. The used
engine is relevant when it comes to feature support, as support is similar for
browsers with the same engine (version). Compatibility and support of HTML and
CSS features are a big issue for developers. Hardly any specification is fully imple-
mented and works consistently across all devices or browsers. Instead, it is one of
the key skills of a web developer to be up to date about compatibility issues and
know how to implement workarounds. Especially Microsoft's Internet Explorer has
for a long time caused issues due to many bugs and incompatibilities in older ver-
sions. That has changed for the better and since the release of version 10 it can be
considered a modern browser. There are several services which help checking
browser support for a certain feature [33], [34]. As this work covers a lot of new
features, compatibility matters a lot. Knowing the evolution of the web, as de-
scribed in Section 2.1, can be most helpful when evaluating the current support for
a certain feature or predict its final implementation. [13, p. 27], [35, p. 7]

A relevant aspect of browsers when it comes to responsive websites is how a
web page is loaded and rendered. When the user initiates the request of a web
page, the browsers sends a HTTP GET request to the web server for the given
URL. The server returns a HTML document which contains the requested page.
The HTML code also contains references to other resources like CSS, JS and image
files. The browser starts parsing the received HTML code to generate the DOM.
Whenever it encounters a <script> tag, the parser by default halts to execute the
script. Halting is necessary as the script could modify the following HTML code. If
the script is referenced as a separate file, the browser has to retrieve it before it can

16 Background

be executed. Additionally, the browser tries to load all referenced CSS files before
it executes any JS. This is done because a script could be dependent on style infor-
mation. Building the DOM, fetching CSS files and executing JS code takes a rea-
sonable amount of time. To increase the page loading speed, most browsers start a
second parser called lookahead or pre parser together with the main parser. Its pur-
pose is to parse the document without creating a DOM, but only to determine ex-
ternal resources. These resources can then be preloaded using another thread, while
the main parser continues its work. As a result, resources may already be loaded
and available by the time the main parser reaches the related HTML code. This
mechanism is also referred to as speculative parsing, as the browser only guesses
that the resource will be needed. It is good practice to put <script> tags just before
the closing </body> tag. This prevents the main parser from halting to load and ex-
ecute the JS code. Alternatively, the async or defer attributes can be added to
<script> tags [19, p. 90]. They instruct the browser to load the JS file asyn-
chronously without blocking or defer its loading and execution to after the DOM
has been fully created. For an in-depth coverage of how browsers work internally,
[36] is recommended. [37]

JS provides two types of events to indicate the loading state of the page. The
DOMContentLoaded event is fired by the browser when the DOM has been fully
loaded and created. It is good practice to wait for this event to fire before perform-
ing any DOM manipulations. The DOM being ready does not imply that all exter-
nal resources have been retrieved. This is what the OnLoad event is for. It fires
when the DOM is ready and all resources have been loaded. The OnLoad event can
also used for individual tags. The attached event handler gets executed when
the image has been downloaded. [38]

Another essential concept to understand is the viewport of the browser. Gener-
ally speaking, the viewport is the area of the browser window which is actually
used to display websites. Technically, it contains everything of a page, including
the HTML element. Therefore it is called the initial containing block in the CSS
specifications. Furthermore, it acts as a constraint for webpages by limiting the
HTML element to the width and height of the viewport. This is necessary to pro-
vide an absolute reference for relative CSS units like percentages, which are always
relative to its parent element. If a website does not fit within the viewport, the
browser adds scrollbars so that the user can see all parts of the webpage by
scrolling.

The described viewport behavior is how it works on desktop-like systems. How-
ever, on mobile devices the viewport concept is a bit more complex. When the first
smartphones with full-fledged browsers were released, most websites were still opti-
mized for desktop systems. Due to the small screen size of mobile devices, these
websites would have been barely usable if they were rendered in the same way as
on desktop systems. This is especially evident for fluid percentage-based layouts.

17 Background

For example, a sidebar with a width of 30% looks fine on a big screen but squeezed
on a smartphone screen in portrait mode. The phone vendor's goal was to provide
a good browsing experience, which back then basically meant to be “as much like
desktop as possible” [39]. They solved the issue by splitting the viewport concept
into two viewports. [40]

The layout viewport acts as a constraint for the layout. It is given a (virtual)
width which is similar to a desktop system, eg. 980 pixels on the Apple iPhone.
Other vendors usually assigned widths between 800 and 1024 pixels, depending on
the device and the browser. In consequence, the layout is rendered relatively to the
size of the layout viewport and thus, similarly as on desktop systems. The width of
the layout viewport can be controlled by the developer using a <meta> tag, which
will be covered in Section 2.4. The second new viewport – the visual viewport –
represents the part of the layout viewport which is visible to the user at a given
moment. The visual viewport changes its size with zooming, while the layout view-
port's size is fixed and not affected by zooming. [39], [41] George Cummins explains
the concept using a real-world comparison.

“Imagine the layout viewport as being a large image which does not change
size or shape. Now image you have a smaller frame through which you look
at the large image. The small frame is surrounded by opaque material
which obscures your view of all but a portion of the large image. The
portion of the large image that you can see through the frame is the visual
viewport. You can back away from the large image while holding your
frame (zoom out) to see the entire image at once, or you can move closer
(zoom in) to see only a portion. You can also change the orientation of the
frame, but the size and shape of the large image (layout viewport) never
changes.” [42]

– George Cummins (2011)

With the introduction of high dots per inch (HiDPI) displays another issue
arose. Those are screens with a relatively high pixel density of usually more than
240 pixels per inch (PPI). A higher pixel density requires (a) pixels to be smaller
and/or (b) less space between individual pixels. That would result in websites look-
ing tiny and illegible on these screens. CSS encounters this issue by defining CSS
pixel (px) as an abstract unit, generally referred to as device independent pixel
(DIP). The result is that one CSS pixel does not equal one device pixel, but for ex-
ample 1.5 or 2 device pixels. The ratio of device pixel and CSS pixel is called the
device pixel ratio (DPR). Please note that the CSS pixel unit is a linear measure of
length, so a DPR of 2 results in 1 CSS pixel mapping to an area of 4 (2×2) device
pixels. [39]–[41], [43]

18 Background

HiDPI screens caused the introduction of another, third viewport by Peter-Paul
Koch – the ideal viewport. The ideal viewport represents the ideal viewport size to
display a website on a device, considering the device's pixel density and the usual
distance from the user to the device. It can be seen as a device-specific, DPR-cor -
rected size of the physical resolution. For example, a tablet with a physical resolu-
tion of 1536×2048 and a DPR of 2 would have an ideal viewport size of 768×1024
(1536/2×2048/2). [44]

The DPR concept is also used for the zoom function on desktop browsers. Al-
though the visual size of all elements on a page increase when zooming in, their
widths in CSS pixel remain the same. What changes is only the browser's DPR and
the viewport width. When zooming in, the DPR increases and the viewport conse-
quently gets smaller. When zooming out, the DPR decreases and the viewport gets
bigger. On mobile devices, the DPR does not change and the layout viewport has a
fixed width, but the size of the visual viewport changes when the user zooms [45,
Sec. 3.2], [46].

The DPR also affects the rendering of images, which is covered in Section 2.5.

2.3 Diversity of Devices

Within the last few years, the number of devices which are online has vastly in-
creased. In year 2008, there were more Internet-connected devices than individuals
who used them. Naturally, web developers and designers should have an overview
of the devices on the market. There are several relevant device characteristics like
screen size and resolution, hardware capabilities, operating system and the default
browser, to name a few. Due to their increased popularity smartphones have been
of special interest for the past few years. With almost 19.000 distinct Android de-
vices in the wild and a plus of 6.900 new models in year 2014 alone, it is impossible
to know all devices and their characteristics [47]. As many devices are very similar
they can be categorized for simplicity. In the following, we will distinguish between

Figure 1: Comparison of a DPR=1 screen (left) and HiDPI
screens with a DPR of 2 respectively 4. [77]

19 Background

five categories: Desktops and Laptops, Mobile Phones, Tablets, TVs, and Others.
Due to the sheer number device variations and screen sizes, this categorization is
not always definitive. For example, a smartphone with a 7 inch display could also
qualify as a tablet – in that case some people use the term Phablet, a combination
of phone and tablet. [19]

2.3.1 Desktops and Laptops

Desktop computers and laptops are still the most-used device to browse the web
[48, p. 9]. They usually have big screens, powerful hardware and a fast Internet
connection. Desktop systems are mostly used while seated, often at home or in an
office. Laptops are compared more mobile, but still used in a similar context usu-
ally and thus, the following is valid for both desktops and laptops. Before the era
of smartphones, websites were developed exclusively desktop-like systems. Assum-
ing a minimal available resolution of 1024×768 pixel worked well when creating
websites. Today, this resolution is still common for legacy screens, but most new
monitors have higher resolutions of up to 2880×1800 pixel (Apple's MacBook Pro)
or even more. [19, p. 2]

As of July 2015, the most common desktop operating systems are Microsoft
Windows (87.2%), Apple OSX (8.6%) and Others (4.2%). Microsoft Windows XP
still has a market share of 10.0% and is mentioned separately because when used
with Microsoft Internet Explorer the highest available browser version is 8. Win-
dows XP together with Internet Explorer is still a common setup, especially in
business environments. The most-used desktop browsers are Google Chrome
(55.4%), Microsoft Internet Explorer (18.9%), Mozilla Firefox (17.3%), Apple Safari
(4.7%) and Opera (1.9%) as of July 2015. [31]

Common screen resolutions are 1366×768 (30.9%), 1920×1080 (12.8%),
1024×768 (8.2%), 1280×800 (6.4%), 1440×900 (6.3%), 1600×900 (6%), 1280×1024
(5.9%), 1280×1024 (5.9%) and Others (23.5%) [31]. Great caution should be ap-
plied when examining resolution statistics. The screen.width JS property which is
used by most analytics services, including the one used for this work, is not reli-
able. It behaves correctly and returns the number of horizontal physical device pix-
els in most desktop browsers. However, in mobile and tablet browsers screen.width
often returns the size of the ideal viewport. As described in Section 2.2.5, the ideal
viewport is a device-specific and DPR-corrected size of the screen. It does not nec-
essarily equal the number of physical device pixels. [49], [50]

Especially in home environments, devices like tablets or smartphones became a
serious alternative to desktop computers within the last years. Since two years the
market for personal computers has declined, 5.2% alone in the first quarter of 2015
compared to last year [51]. Despite this tendency, desktop computers will of course
still be around in the future [52]. Users prefer to use desktop systems for produc-

20 Background

tive and task-oriented work or actions where a big screen and close control is bene-
ficial, for example text-intensive tasks or image editing. The feeling of security is
also higher when using a desktop system, for example when doing online banking.
[19, p. 3]

2.3.2 Mobile Phones

The next category we look at are mobile phones, or just mobile in short. In general,
older feature phones and smartphones are likewise counted to this category. This
work mainly focuses on smartphones as the most of the presented techniques and
approaches require a reasonably modern browser and hardware. That is usually not
the case for feature phones.

The smartphone market has been doing very well since the beginning of its
boom about 8 years ago. In 2013 there were 1.3 billion smartphones in use and this
number is expected to double by 2018 [53]. This trend led to many new models be-
ing introduced with continuously improved hardware and software. Many users
change their devices very frequently in cycles of 12 to 18 months. Modern smart-
phones often have a computational power similar to budget desktop computers. In
[54], Jonathan Stark also outlines benefits that go beyond that:

“[…] smartphones are actually more powerful than desktops in many ways.
They are highly personal, always on, always with us, usually connected and
directly addressable. Plus, they are crawling with powerful sensors that can
detect location, movement, acceleration, orientation, proximity,
environmental conditions and more.” [54]

– Jonathan Stark (2012)

All of these capabilities should be considered when planning and creating a web-
site. The increased mobility of these devices also greatly influenced the user's be-
havior. The user is able to fetch information, get directions, do online shopping and
much more – all while being on-the-go. But according to a research by Google,
smartphones are also used at home 60% of the time [48]. Often for simultaneous
screening, a usage pattern which describes the usage of two screens at the same
time, for example watching TV while using the smartphone.

As of July 2015 the most common mobile operating systems on phones were An-
droid (64.1%), iOS (20.4%), Nokia's Series 40 (3.7%), Windows (2.3%), Blackberry
(1.2%) and Others (8.3%). The most-used browsers are Chrome (33,8%), Safari
(19.0%), Android Browser (15.2%), UC Browser (14.93%), Opera (11.63%), IEMo-
bile (2.1%), BlackBerry (0.9%), Nokia (0.7%), Firefox (0.35%) and Others (2.5%).

21 Background

The UC Browser is not common in western countries, but is the biggest mobile
browser in China. [31]

Common screen resolutions are 360×640 (19.9%), 480×800 (10.2%), 320×568
(9.4%), 320×480 (6.0%), 720×1280 (5.3%), 375×667 (4.9%), 320×534 (3.9%) and
Others (40.6%) [31]. The large Others value depicts the great fragmentation of
screen resolutions in the mobile phones device category. Smartphones are often
shipped with HiDPI displays, which are displays with a pixel density of usually
more than 240PPI. These HiDPI displays caused the screen.width property to be
changed, which makes the above resolution statistics unreliable. [49], [50]

While feature phones are not within the scope of this work, they should gener-
ally be considered when talking about later-covered responsiveness and user experi-
ence. Especially in Africa, but all over the world there are countries where feature
phones are still the main devices to access the Internet [55]. Developers should be
aware of that and make their websites as accessible as possible. [19, p. 3]

2.3.3 Tablets

The tablet market has developed in a similar way as the mobile market. While the
concept of tablets has been around for many years, they only got popular with the
introduction of the first iPad by Apple in 2010. Since then many different models
have been introduced. Most tablets are shipped with a similar hardware than
smartphones but with considerably bigger screens of usually 6 to 10 inch. That
said, tables are not as mobile as smartphones but still portable. This is also re-
flected in usage statistics with tablets being used at home 79% of the time com-
pared with only 60% for smartphones [48]. The same research shows that the main
motivators for using tablets are entertainment and browsing, often in a relaxed and
time-unbound setting. [19, p. 5]

The operating systems and browsers are similar to those of smartphones, but
their market shares vary. For operating systems, Apple leads with iOS (66.4%) fol-
lowed by Google's Android (29.7%), Linux (2.6%) and Microsoft Windows (1%).
The browser landscape matches the OS distribution: Safari (59.6%), Chrome
(17.0%), Android Browser (16.2%), Amazon's Silk Browser (2.6%), UC Browser
(1.17%) and Others (3.5%). The market share data is from July 2015. [31]

Common tablet resolutions are 768×1024 (59.7%), 800×1280 (9.3%), 600×1024
(7.4%), and Others (23.7%). [31] The screen resolution statistics are subject to the
same inaccuracy as mobile screen resolutions due to the unreliable screen.width be-
havior. Especially the high 768×1024 value, which correlates with the iOS market
share, might not be accurate. The Apple iPad version 3 and after are shipped with
a HiDPI display having a resolution of 1536×2048 and a DPR of 2. The
screen.width property returns the size of the ideal viewport, which is still
768×1024 due to the DPR of 2. [49], [50]

22 Background

2.3.4 TVs

Televisions are perhaps not expected in a list of web-enabled devices. Despite that,
many current TV models can be connected to the Internet and come with an inte -
grated browser. In 2010, 24% of all US households had at least one Internet-con-
nected TV. This number doubled to 49% in 2014 and further growth is expected
[56]. These so called smart TVs are shipped with powerful hardware and the
browsers have a good support for modern features [57]. The common screen sizes
range from 30 to 60 inches with resolutions of 1920×1080 (Full HD) or up to
3840×2160 pixel for new Ultra HD displays. The next generation, Full Ultra HD
(FUHD) televisions with a resolution of 7680×4320 pixel are already planned. It
should also be mentioned that even older TVs without web support can be con-
nected to the Internet using devices like Apple TV or Google Chromecast. [58]

No statistics of operating system or browser market shares and the used resolu-
tions are available at the time of writing.

A big issue with smart TVs is the input method. Using an ordinary TV remote
control to navigate through a website or enter text does not provide a good user
experience. Manufacturers came up with different solutions: special keyboards, ges-
ture or voice control and more. A practical and universal approach is to pair a
smartphone or tablet with the TV and use it as an input device. [19, p. 5], [59]

Furthermore, privacy issues may arise when browsing with a smart TV. Those
devices are usually very big and often set up in a shared room, eg. the living room.
Thus, the displayed content may be visible to more people than just the intended
consumer. This should be considered when creating websites or applications. In
general, other style guidelines apply when designing and developing for such big
screens compared to desktops or mobile. Jason Grigsby gave an excellent talk [59]
on developing for TVs and Opera provides a good pool of resources as well [60].
[19, p. 5]

2.3.5 Others

We have now covered four common device types. More types exist but are not fre-
quently enough used to categorize them. Most currently popular gaming consoles
are shipped with an integrated web browser. Sony's Playstation 4 and Nitendo's
Wii U come with custom browsers based on the WebKit engine. Microsoft's XBox
One runs Internet Explorer 10. All three browsers can be considered (semi-)modern
and have decent feature support. Most older consoles have poor to no support for
the web. The shortcomings of TVs apply for gaming consoles as well. [19, p. 6], [61]

Another relevant device type are e-book readers. Their computational power is
often very limited and they usually come with monochrome displays which have

23 Background

very low refresh rates. Due to this combination it is a not very user-friendly way to
browse the web. [19, p. 6]

The last covered device type are so called wearables – devices which can be
worn on the body, eg. watches or glasses. Especially smart watches have gained
popularity within the last two years [62]. The can be paired with a smartphone to
allow easy access to common functions like reminders, text messages and others. A
known glasses project is Google Glass.

The list of covered device types and categories is by no means complete. The in-
tention was to show that there are many different devices which need to be consid-
ered when planning and implementing a web project. The boom of smartphones
back in year 2007 encouraged developers to come up with new approaches to target
different devices. That marked the birth of a new movement in the community
which is today known as the responsive web.

2.4 Responsive Web

Firstly, it is important to know that there are several meanings of being responsive
or responsiveness. The web performance community also uses the term responsive
to refer to speed. While speed and performance is also an important aspect in this
work's context, the terms are used in another context. The term Responsive Web
Design (RWD) was coined in 2010 by Ethan Marcotte and is a well-defined tech-
nique [63]. It is not that simple with the terms responsiveness, responsive website
and being responsive. All three have refer to the same concept, but there are ongo-
ing discussions in the community about what they actually comprise [64]–[66]. All
terms will be explained and discussed in detail later on. For now, we generalize to
help understanding. Being responsive means to react or answer to something. In
the context of this work the reaction is about responding to the user's device and
needs on a website. Most people who own a smartphone have probably experienced
responsiveness already when browsing the web. Some websites look different on a
smartphone compared to a desktop system. The most obvious difference on small
devices is usually the layout. Multiple-column layouts may collapse to a layout
with less or even just one column. Other parts of the website like the navigation
may be initially hidden and only shown after clicking a “Show navigation” button.
This behavior on a website is usually described as being responsive. This visual as-
pect is the most obvious, but not only part of responsiveness. Instead, responsive-
ness refers to the big picture and concept of developing for multiple device types
and providing a good user experience. RWD is one concrete technique to imple-
ment responsive websites.

24 Background

2.4.1 Evolution of Design

Before going into detail about the definitions, it is helpful to understand the his -
tory of print design and the transition to web design. When designing for print,
there are certain physical boundaries. For a painter it is the size of the canvas and
for the layout designer of a news paper it is the size of the page, just to give two
examples. Within these boundaries, the designer is in control. It is fixed that the
resulting print is the only way the user can consume the content. In contrast to the
web, the consumer of a printed document can not change the size of the page, the
font size, colors or zoom the entire document. Print designers learned to deal with
these limits and design with them in mind. This approach totally makes sense for
print media. [1]

In comparison, the web is very different to print. As explained by John Allsopp,
when new mediums arise, the new one usually borrows from the existing one [67].
Allsopp takes the example of early television, which was kind of “ instructive view-
ing” or “radio with pictures” [67]. It did not take advantage of the new medium's
possibilities. The same holds true for the transition from the print medium to the
web medium. When the web emerged, designers tried to apply the print workflow
to it. The new boundary was not the canvas or the size of the printed page, but the
size of the browser viewport. Beside that, the consumer has taken over control
from the designer. The consumer can easily adjust the font size, colors and other
styles to fit her preferences and needs. Furthermore, in the web the viewport size
can easily be changed by resizing the browser window or zooming the content. [67]

Before the era of smartphones, most of the print workflow was not good, but
sufficient to serve the average user. The variety of displays and resolutions was not
very diverse. Most users had at least a certain value of pixels in width. In year
2004 the most common resolution was 1024×768. It then became common practice
for designers to assume 1024×768 pixel as the minimum available resolution when
creating a website [68]. Designers had this minimum width in mind and used the
absolute CSS unit pixels to create websites. Back then, the result worked well for
most users. It was the time when notes like “Optimized for a resolution of
1024×768” were common. However, there are various downsides of this approach.
As soon as one or more constraints change, for example the user resizes the browser
window, the layout could break. In this context breaking means that horizontal
scrolling is needed in order to see all of the content. This is considered a bad us -
ability and thus, a poor user experience. The resulting websites were not flexible at
all, while the web inherently is. The change of the device landscape due to smart-
phones forced designers to adapt to this flexibility of the web. The idea was not
new. The before-mentioned article [67] already praised the web's flexibility in com-
parison to traditional print in year 2000. It is an excellent and strongly recom-

25 Background

mended article which outlines the idea behind responsiveness very well – more than
ten years before it was broadly put to practice by web designers:

“The control which designers know in the print medium, and often desire in
the web medium, is simply a function of the limitation of the printed page.
We should embrace the fact that the web doesn’t have the same constraints,
and design for this flexibility. […] Everything I’ve said so far could be
summarized as: make pages which are adaptable. Make pages which are
accessible, regardless of the browser, platform or screen that your reader
chooses or must use to access your pages. This means pages which are
legible regardless of screen resolution or size, or number of colors (and
remember too that pages may be printed, or read aloud by reading
software, or read using braille browsers).” [67]

– John Allsopp (2000)

When this article was written in year 2000 it was a very forward-thinking ap-
proach. However, technology lagged behind. Not many methods to make websites
more flexible were available and the existing ones lacked browser support. Instead,
web designers were struggling to work around various browser incompatibilities at
that time and were not concerned about making websites flexible. There was sim-
ply no need for flexible websites, as the user environment was stable and pre-
dictable.

This was slowly changing to the better, but only the introduction of smart-
phones caused an industry-wide rethink. Especially the release of the first Apple
iPhone in 2007 was an influential event. The assumption that most users have
screens with at least 1024 pixel in width was no longer true. New devices emerged
over time and as we have seen in the last section, designers have to deal with a
greater fragmentation of screen sizes and resolutions than ever before. Displays and
resolutions are steadily getting smaller and bigger – speaking mostly from wear-
ables or smartphones on one end and desktop monitors or TVs on the other. Since
a few years, designers have had no choice but to adapt to building more flexible
websites as the market is demanding them. [1]

Various approaches were invented to achieve the goal of creating websites which
are optimized for different devices. One approach is to create a separate website for
mobile devices. Those separate sites are referred to as m-dot sites, because often
they are reachable at http://m.<site>.<tld>, eg. http://m.facebook.com. Another approach
is to create a native smartphone app. These alternatives are discussed later on in
Section 3.5.2.

http://m.facebook.com/

26 Background

2.4.2 Responsive Web Design

After some years of many different approaches, in year 2010 Ethan Marcotte in-
vented a technique he named Responsive Web Design (RWD). In a popular A List
Apart article he defined it as the combination of three components: flexible, grid-
based layouts, CSS media queries and flexible images [63]. Marcotte's book on the
topic was released about a year later [1]. All three components will be used for the
proof of concept in Section 4.

1. Flexible, grid-based Layouts: The foundation of a RWD website is its
flexible layout. It is implemented by using the CSS percentage unit to set
the widths of the layout. This simple method causes a big difference to us-
ing the absolute pixel (px) unit. Due to the nature of the relative percent-
age unit, the layout will automatically adapt to the size of the viewport.
This method alone is already very powerful, but usually not enough. Pre-
sentation issues may arise especially on very narrow viewports. For exam-
ple, a 3-column layout with a lot of text will likely look squeezed on a mo-
bile device when viewed in portrait mode. Additionally, the layout adapts
but the other properties like the font size or margins remain unchanged.
Usually some more adjustments are needed to make websites work well on
small and big screens. This is what CSS media queries are used for. [1, p.
17]

2. CSS Media Queries are part of CSS3 and allow the developer to apply
CSS declarations only if certain conditions are met. These conditions are
expressed using CSS media queries. A media query can consist of media
types and media features. Available media types are screen, handheld, tv,
print, braille, speech, among others. The handheld and tv media types
could prove very useful for responsive design. However, the only applicable
media type for computer displays is screen. This is due the very inconsis-
tent implementation of the handheld and tv media types in all major
browsers [69]. The print media type is used to set styles for printing a page
and screen is for all types of computer screens. Media features allow to re -
fine media queries and check for more specific conditions. The most rele-
vant media feature for RWD is width, especially its variants min-width and
max-width. They enable the developer to apply separate CSS declarations
targeting only certain viewport widths. When gradually reducing the size
of the viewport, a design usually needs adaption when falling below certain
widths. While usually not as severe, this also holds true when the width of
the viewport is increased. The developer can use media queries to adjust
the design accordingly. The widths at which a design changes its appear-
ance are called breakpoints. [70]

27 Background

For example, the following media query could be used to target screens
below 320 pixel in width. It changes the layout from a 3-column layout to
a single-column layout. Web developers would speak of a breakpoint at 320
pixels.

3. Flexible images and media: This method is also known as the fluid im-
ages technique, but can applied to other media like videos as well. It con-
sists of a very short piece of CSS: img { max-width: 100%; }. This code
causes images to be automatically scaled to fit into their container element.
Section 3 covers flexible images in detail and explains why this approach
alone is usually not enough to create well-working and efficient websites.
[1, p. 45]

All three components of RWD use client-sided technologies. Sometimes it is sen-
sible to use responsive approaches on the server as well, which is then referred to as
Responsive Design with Server Side components (RESS). However, RESS is not a
part of the RWD approach per definition. A server-sided example is user agent de-
tection, which is used in a solution of Section 3.

To make RWD work, the viewport of the browser has to be set up correctly. In
the Section 2.2.5 we learned that mobile devices render sites using a (virtual) lay-
out viewport of usually around 980 (again, virtual) pixels in width. This is done to
make desktop-optimized websites render correctly on mobile devices. A website
built with RWD does not need this wide viewport because they are optimized for
small screens already. Instead, the layout viewport should be as wide as the ideal
viewport. This can be configured using a special <meta> tag introduced by Apple for
the first iPhone [8]. The tag of the following listing causes the device's layout view-
port to be set to the size of the ideal viewport. For example, the layout viewport
might be set from 980 pixels in width to 360 pixels in fully zoomed-out presenta-
tion. As a result, the initial page representation after loading the page shows 360
CSS pixels in width and percentage CSS units are calculated relatively to this
width. [44]

@media screen and (max-width: 320px) {
 .column {
 width: 100%; /* Change width from 33.3% to 100% (3 → 1 column layout) */
 float: none; /* Show columns one below another instead of side by side. */
 }
}

Listing 5: A CSS media query to change from a 3- to a 1-column layout.

<meta name="viewport" content="width=device-width, initial-scale=1">

Listing 6: The viewport <meta> tag to set the layout viewport of (mobile) browsers.

28 Background

RWD got one of the biggest movements in web development since the late 90s
under way [71, p. xi]. Due to its clear definition, web designers and developers
managed to change their workflow. By using the three proposed technologies it was
possible to create more flexible websites which adapt to the size of the device they
are displayed on. RWD and being responsive has become a big buzzword in the
web community since then. Many clients demand a responsive website, sometimes
without even knowing what it means. Many people with different backgrounds
talking about the same thing can easily cause misunderstandings. While RWD is
well-defined, responsiveness is not. At first, responsiveness was used as a synonym
for RWD. But soon after the introduction of RWD, designers and developers real-
ized that often more than the three components of Marcotte's approach are needed
[72], [73]. For a good user experience, more than responding to the size of the de-
vice is necessary.

2.4.3 Meaning of Responsiveness

As mentioned at the beginning of the Section 2.4, there are ongoing discussions in
the community about what is needed to be responsive [64]–[66]. Jason Grigsby ar-
gues that a website can be responsive even if it does not use all three ingredients of
RWD. What matters is if it works well for the user: “I take comfort ignoring the
definitions and instead asking these questions about a design and its implementa-
tion: Does it adapt to screen size? Does it take advantage of device capabilities? Is
it accessible anywhere? Does it work well?” [64]. In [72], Tim Kadlec suggests that
a new term like future-friendly may be needed to describe the big picture of mod-
ern web design. He also proposes that changing the meaning of the already so com-
mon term RWD will cause even more ambiguity and misunderstandings. In [66]
Jeffrey Zeldman reasons that a very clear and easy to follow concept like RWD was
needed back in 2010. It caused designers to actually use it and change their work-
flow. This would perhaps not have been the case if it was a vague description of
the big picture. However, he agrees that it is time to rethink responsiveness and
that it comprises of more than just flexible layouts, flexible images and media
queries. Scott Jehl picks up these discussions in his book Responsible Responsive
Design [74]. Adding responsibility to RWD is a well-conceived idea. Every web de-
signer and web author carries great responsibility as their way of creating a website
is crucial to how their content can be consumed. Jehl suggests to combine RWD
with the following keywords to deliver a “broadly accessible, delightful and sustain-
able web”: usability, accessibility, sustainability and performance [74]. Matthew
Wilcox describes responsiveness as trying to “present information as clearly as pos-
sible” and “be as efficient as possible for the user” [75]. In summary, the meaning of
responsiveness seems to evolve towards an overall concept for a good user experi-

29 Background

ence. This work tries to apply a reasonable intersection of the current understand-
ing of various authors.

2.5 Images on Websites

Before we cover responsive images in the next section it is important to learn more
about images on the web in general. In web design and also other design disci -
plines, images have either a contentual or a presentational purpose. Contentual im-
ages are of informative value to the user and contribute to the document's content
by carrying this information. For example, a picture or a figure which further de-
scribe the content. Presentational images only serve a decorative purpose and do
not contain valuable information for the document's context. Typical examples are
small icons for buttons or background images, eg. a colored pattern that stretches
across the entire webpage. [76]

Having covered these two types of images, we can introduce the two main
methods to display images on websites: the HTML tag and CSS background
images. Earlier we learned that HTML is used to semantically outline the structure
and content of a document. Thus, the tag is intended for contentual images
and will be covered first. The following listing shows a typical tag.

The src attribute provides the image source and is the only required attribute.
It is usually a relative or absolute URL to an image file. Using the data URI
scheme it is also possible to provide a Base64 encoded image directly within the src
attribute [74, p. 129]. The result is that no extra HTTP request is needed to fetch
the image file, as it is already embedded in the HTML document itself. This fea-
ture is rarely used but can be a sensible alternative to improve the performance, es-
pecially for small images. The data URI scheme can be used for JS-based respon-
sive images solutions to deliver valid HTML documents. An issue for responsive
images is that the tag only supports only src attribute. The width and height
attributes contain the image's intrinsic size in CSS pixel. This can help the browser
to render the page layout before the image has been loaded completely. It should
be considered that there are users which might not be able to see images, for exam-
ple blind people. The alt attribute is for them. It stands for alternative text and
should provide a textual description of the image. Beside the attributes used in the
above example, the sizes and srcset attributes are relevant to responsive images.
These two attributes were recently added to the specs as part of the native respon-
sive images solution, which is covered in the next section.

Listing 7: An example of the HTML tag.

30 Background

The second main method for implementing images on websites are CSS back-
ground images. This approach is intended for presentational or decorative images.
As the name suggests, images implemented this way are displayed in the back-
ground of the actual content. There are several CSS properties to adjust the ap-
pearance of background images. The properties can be applied to any HTML ele-
ment. The image resource is set by the background-image property. As with
's src tag, the value can be an URL or an inline image encoded as Base64.
The background-repeat property determines if the background image is repeatedly
displayed if it fits into the target element more than once. More properties are cov-
ered in the evaluation of the CSS Background Images solution in Section 3.4.5. [76]

In Section 2.2.5 we learned that CSS handles HiDPI screens by defining a DPR
to map one CSS pixels to a different number of device pixels. This method affects
the presentation of images. The browser renders an image not necessarily with the
image's intrinsic width, but calculates the actual width in device pixel using <in-
trinsic image width> × DPR. For example, an image width an intrinsic width of
200 pixel would be scaled and displayed with 400 device pixels on a screen with a
DPR of 2. This behavior is mostly desired if the provided content is not optimized
for DPRs other than 1. Without this scaling process the image would be displayed
much smaller and perhaps be illegible. However, if we do supply optimized images,
they should always be displayed with a DPR of 1. This ensures that we get the de-
sired result of sharp images, where 1 image pixel maps to 1 device pixel. In order to
consider this issue, the client needs to know the DPR of the images returned by the
server. Responsive images approaches should offer a method to provide the DPR
with the delivered content. If this is not possible, the issue can be solved by explic-
itly assigning width and height values using CSS.

Image files are stored and organized using an image format. They usually apply
some kind of compression to decrease the amount of storage needed to save the file.
Compression algorithms can be classified as lossless or lossy. While a lossless algo-
rithm operates without decreasing the quality of the source material, lossy com-
pression results in even smaller files but at the expense of quality. Most image for-
mats can also be categorized as raster or vector formats. [77]

Raster formats store information for every pixel in the graphic and thus, the file
size increases with the size of the image. The most common raster image formats
for the web are the Joint Photographic Experts Group (JPEG or JPG) format, the
Portable Network Graphics (PNG) format and the lesser-used Graphics Inter-
change Format (GIF). All of them are supported by all major browsers. The JPG
format is used for 45% of all images on the web as of July 2015 [4]. It is the main
format for lossy photography compression. It does that very efficiently and as the
proof of concept in Section 4 uses photographs, it is the main image format used in
this work. However, all presented solutions also work with PNG and GIF images.
PNG supports a separate (fourth) color channel for storing transparency, also

31 Background

known as alpha transparency. It is a frequently used feature on websites. The PNG
format can very efficiently store images with big uniformly colored areas. These
features made PNG a very popular web image format as well, being used for 30%
of all images [4]. The GIF format is popular for its ability to store animations. It is
used for 23% of all images on the web [4]. Due its limitation to only 256 different
colors, animations should be the only use case to deploy the GIF format. There are
some other promising image formats up and coming, but none of them has substan-
tially gained popularity so far. For example, Google's WebP format is reported to
be more efficient as JPG but lacks browser support [78, p. 238]. [77]

Vector formats use mathematical expressions to only store information about
individual elements of a graphic, eg. lines or circles. Vector images can be scaled
without losing quality. In theory, this feature makes them an ideal format for re-
sponsive images. However, due to the complexity of photographs they can not be
efficiently represented by mathematical expressions. Thus, vector formats are only
suitable for simple graphics like icons or logos in practice. The W3C invented the
Scalable Vector Graphics (SVG) format, which is the only widely supported raster
format for the web. As this work's focus is put on the use of photographs, SVG is
not further discussed in the following sections. For content other than photographs,
SVG and other vector formats should definitely be considered as an alternative to
raster formats though. [19, p. 126], [74, p. 140]

32 Responsive Images

3 Responsive Images

This section evaluates six responsive images solutions. It starts with Section 3.1,
which covers the basics and the motivation. Section 3.2 outlines the conceptual
method for making images responsive and outlines the differences of server- and
client-sided approaches. The evaluation was performed according to an Evaluation
Framework, which is documented in Section 3.3. Following next, Section 3.4 covers
the evaluation itself and describes the conceptual implementation of each solution.
An overview of the findings can be found in Section 3.5. This last section also in-
terprets the results, gives recommendations, suggests alternatives and outlines limi-
tations of the research approach.

3.1 Introduction

In Section 2 we learned a lot about the history and motivation for the responsive
movement. It started as an attempt to encounter the problems that occurred with
the boom of smartphones, which started in 2007. Eventually Marcotte came up
with RWD [63], which happened to be adopted by developers and has been the
core part of responsive techniques since. RWD addressed images by a technique
called fluid images. It consists of basically one line of CSS which causes images to
be flexible:

This CSS code causes images not to be displayed with their intrinsic width and
height, but to adapt to the width of their parent element. That way, the client au-
tomatically scales images to fit the parent element while preserving their aspect ra-
tio. Images adapt to the flow and size of other elements, which gives this technique
its name fluid images. [1, p. 48]

However, this adaption is just one aspect of truly responsive images. Let us re-
member [75]'s definition of responsiveness: “present information as clearly as possi-
ble” and “be as efficient as possible for the user”. Now consider these two practical
questions:

1. Is information presented as clearly as possible by using the same image
with the same field of view for all screen sizes?

2. Is it as efficient as possible to serve the same image file to a 1920×1080
pixels desktop monitor as to a 480×320 pixels smartphone?

img { max-width: 100%; }

Listing 8: CSS declaration of the fluid images technique.

33 Responsive Images

The answer to both questions is no for most use cases. Firstly, answer one is ex-
plained. As we learned before, by using the fluid images technique images are auto-
matically scaled. It is important to understand that the actual image file does not
change. That means the image content does not change either, it is just scaled. The
issue here is most evident for big images with a small area of interest. Such an im-
age does look fine on a big screen. On a small screen though, due to scaling the al -
ready small area of interest gets even smaller and perhaps illegible. As we will learn
the next section, the use case of serving different image content depending on vari-
ables like screen size is referred to as art direction. [79]

The second answer can easily be explained using some example data. Let us
stick to the resolutions from the question and assume that the image is display
with the width of the viewport, thus 100% of the <html> element. A typical
1920×1080 pixels photograph is around 2 megabytes in size. This same image is de-
livered to the smartphone, where it gets down-scaled to 480 pixels in width by the
client. If we would deliver a down-scaled image from the beginning, we could easily
save 1.8 megabytes – a huge saving of 89%. This issue is referred to as resolution-
based image selection. [5], [79]

Motivation

Now that we have a basic understanding of what the responsive images idea is
about, we can further outline the motivations for a solution. As of July 2015, the
total size of an average website is 2.2 megabytes [4]. This is a lot of data – even
with a very fast Internet connection it usually takes at least one or two seconds to
download. When using a mobile device while having a poor network coverage it
can easily take tens of seconds or even longer to load. Speed and performance are
one of the key factors of a good user experience. Research shows that users are not
willing to wait for longer than 10 seconds and might immediately leave the website
[80]. Developers have addressed a lot of issues to decrease the total weight of a
webpage. They minify CSS and JS files, enable HTTP compression, optimize
caching and use content delivery networks (CDNs) to spread their files on server
all over the world to reduce loading times [74, p. 109]. All of these methods have
great benefits and should be used, but another major aspect is often missed: im-
ages. Sheer 63% of the total size of the average website are images. In absolute
numbers that is 1.3 megabytes of images for the average website [4]. For years,
these numbers have been growing and that trend will probably go on due to con-
tinuously increasing screen resolutions. An important factor for this trend are
HiDPI screens. A display with a DPR of 2 or 3 results in 4 respectively 9 times as
many pixels as for a DPR=1 display.

The general issue of image size could be approached by inventing new image
formats with better compression algorithms. However, this is a very complex topic

34 Responsive Images

and it takes years to establish a new image format on the web. Furthermore, it is
just one part of the problem.

The main issue lies in the great fragmentation of screen resolutions, especially
since smartphones got so popular. Even with better compression, it is far from
ideal to serve the same image files to every device. The tag was originally
limited to just one resource for the src attribute though. Designers were faced with
the choice of “whether to make their pages fuzzy for some or slow for all – most de-
signers choose the latter, sending images meant to fill the largest, highest-resolution
screens to everybody.” [81]. A lot of data – and thus, time – is wasted by serving
large images to small screens. The community came up with many approaches to
tackle this problem. Some of these approaches are reviewed in Section 3.4. All of
them have some drawbacks which is why a native solution supported by the
browser was demanded. The Responsive Images Community Group (RICG) was
formed in 2012 by the W3C to address this issue. The development of a proposal
was accompanied by many discussions, suggestions and disagreements. Eventually
the RICG and other stakeholders agreed on a solution and it was added to the
WHATWG specs in August 2014. The W3C specs followed in March 2015. That
did not immediately solve the problem though. As we learned in the Section 2.1,
something being added to the specs does not necessarily mean browser vendors im-
plement it.

Opera and Chrome were one of the first browsers to support native responsive
images in October 2014. This was only made possible by a crowd funding project
initiated by RICG member Yoav Weiss [82]. Many people and companies contrib-
uted, what clearly showed the actual need for a solution. The situation is getting
better and the native responsive images solution should be supported by all major
browsers in foreseeable future. Mozilla only recently shipped version 38 of its Fire-
fox browser with support in May 2015. Apple has partly implemented the specs for
the Safari browser. Microsoft has implemented the srcset attribute to its preview
version of Internet Explorer and the <picture> element development status is “un-
der consideration” [83]. This sounds promising, but does not solve the issue for
older browsers which are still in use. Until there is widespread support and old
browser versions vanished, developers have to consider all available options and
choose the most-appropriate solution for every project. The following tries to pro-
vide a guideline and decision support by reviewing and comparing current ap-
proaches. [84]

3.2 Technical Foundations

Before we set up an evaluation framework, it is helpful to know how possible solu-
tions work from a technical perspective. Available solutions can be categorized as
server- or client-sided, based on whether the image URL or resource is selected and

35 Responsive Images

set on the server- or client-side. Both categories have similar characteristics and
their pros and cons, which will be discussed later in this section. Before doing so,
let us first cover the concept of possible solutions in general. Most of the responsive
images use cases require to choose an image depending on characteristics of the
user's device, eg. the screen resolution. The basic workflow of a possible solution is
as follows:

1. Retrieve the current value of a device characteristic of interest.
2. Use some logic on the value to determine which image fits best.
3. Instruct the user agent to download only this image and display it.

These steps should be understood as a rather conceptual description of a solu-
tion. Not all solutions require the developer to implement every step. Some steps
might be handled by the solution itself or multiple steps can be processed together.

Step 1 deserves a closer look as the quality of a solution is greatly dependent on
the available device information. First of all, device characteristics are inherently
only known by the device itself. The browser running on the device has access to
the operating system and thus, to a lot of information like screen resolution, con-
nection speed or available input methods. Some of this information is made avail -
able to the developer through JS and CSS media queries. As we learned earlier, it
can not be relied on JS being available. CSS media queries only work with CSS
background images (or JS), which are not suitable for all use cases. Assuming we
can neither use JS nor CSS media queries, we are left with server-side technologies.
However, on the server-side it is far more difficult to obtain information about the
device. Server and client communicate via the HTTP protocol. Per default the only
useful transmitted information by HTTP requests is the User-Agent header. This
string can be used to perform a user agent detection, which is used by Solution 1.
A more detailed discussion about the differences of server- and client-sided solu-
tions is presented in the following.

3.2.1 Server-Side Solutions

In general, all server-side measures to enhance the responsiveness of a website are
summarized as RESS. The classification as a server-side responsive images solution
in this work means that the image URL or resource is determined and set on the
server. This is done by a server-sided scripting language like PHP, Python and oth-
ers. The script determines the best image and then directly inserts the image URL
into the HTML or CSS code before it is sent to the user. In consequence, the client
knows the correct image source immediately after fetching the HTML or CSS code.
This allows server-side approaches to be very fast, as the browser's lookahead
parser can initiate the image download at a very early stage. [37]

36 Responsive Images

An alternative to setting the image URL directly in the HTML or CSS code is
to leave the URL the same, but serve different images. This can be done by config -
uring the web server to forward all image requests to a custom script. This script
selects and delivers the best available image or creates a fitting version exclusively
for the particular request. An advantage of that option is the easy integration into
existing applications. The HTML markup for images can remain unchanged and
the best image is delivered for the existing image URLs. A problem with serving
multiple image versions for the same URL is caching. Proxy servers have to be in-
formed about when to use which image version. This is not always possible and can
prevent responses from being cacheable. Details will be covered later in the evalua-
tion.

A common issue of server-side approaches is the gathering of device informa-
tion. The used information gathering technique is the main difference between the
first three evaluated solutions. Solution 1 deploys user agent detection as a very
simple method to learn more about the user's device. Solution 2 utilizes JS to re -
trieve device information and saves this information to a cookie. The cookie data is
sent to the web server with every HTTP request and can be used by a script to se -
lect an image. Solution 3 is based on a rather new approach called HTTP Client
Hints. It extends the HTTP protocol by various headers which the client can set to
transmit device information to the server.

Another drawback of server-side approaches is their inability to dynamically re-
act to changes of the user environment. Possible changes include resizing the view-
port, changing the device's orientation or using the zoom function, among others.
As the image source is set on the server-side, changes can only be made on a new
page load or a refresh. This prevents images from being changed immediately after
changes of the user environment. The issue can partially be overcome by using JS
to react to environment changes. Solution 3 supports dynamic changes, but it is up
to the browser when to reissue image requests on changes.

3.2.2 Client-Side Solutions

The classification as a client-side solution in this work means that the image URL
or resource is determined and set on the client. This can either be done by the de-
veloper using CSS or JS, or natively by the browser itself. The covered client-sided
solutions are far more different among each other than the server-sided solutions.
Therefore, not as many common characteristics can be found.

In general, the device information gathering process is easier because the code
runs on the client device itself. All presented client-sided solutions are quite flexi-
ble. They allow for dynamic changes without a reload of the whole page. Especially
if JS is available, very customized and powerful implementations are possible. A
downside of JS approaches is that they can slow down the page loading time. JS

37 Responsive Images

code per default only gets executed when the HTML has been fully loaded and the
DOM has been created. This prevents the lookahead parser from pre-loading im-
ages. [37]

Client-sided solutions commonly use different URLs for different images and
thus, allow the use of CDNs and images to be cached by proxy servers.

3.3 Evaluation Framework

This section outlines the used approach of the following evaluation. It documents
the creation of an evaluation framework. The framework's purpose is to perform
the evaluation in a formal, understandable, and comprehensible manner.

3.3.1 Selection of Solutions

One of the first steps was to select solutions to be evaluated. There are various re-
sponsive images approaches available at the time of writing. Many people created
customized solutions to suit their specific requirements. Most of these approaches
have an overlying conceptual approach in common. It is not within the scope of
this work to evaluate every available solution. This was encountered by selecting a
subset of concepts for evaluation. First, it was tried to collect a pool of available
concepts. Following next, some of these concepts were selected for evaluation. The
selection process was done by considering the following requirements:

1. The solution should be commonly used at the moment.
2. Browser support should be good, or expected to be within the near future.

The first requirement was assessed by reviewing opinions of the developer com-
munity. Many posts, comments and articles were considered to come to a decision
[85]–[88]. The second requirement could mostly also be evaluated together with the
research for requirement one. Browser support of at the time unsupported solutions
or features was verified by checking browser vendors' websites and bug tracker
platforms [89]–[91]. This approach led to a selection of six solutions, which are pre-
sented in the next section. The HTTP Client Hints solution is not commonly used
at the moment due to a lack of browser support. It was selected anyway as support
can be expected within the near future. Not selected solutions include the CSS im-
age-set method [92] and the CSS content property approach [93]. They are both
not commonly used. The image-set method only allows a DPR-based selection at
the moment [94, Sec. 2.3]. The content property approach has several drawbacks.
Both approaches are further discussed as alternatives in Section 3.5.2.

38 Responsive Images

3.3.2 Evaluation Criteria

A formal process was needed in order to conduct a comprehensible evaluation and
to maximize objectivity. This was encountered by creating an evaluation frame-
work to follow. This resulting framework consists of various criteria which are
rated.

The evaluation was conducted by only one person, the author of this work.
Therefore, a personal bias was inevitably present. To minimize this influence, it
was decided to use a qualitative evaluation model rather than a quantitative
model. This means rating the criteria by choosing from a pool of predefined alter-
natives instead of assigning a numerical value within a certain range. Furthermore,
for quantitative approaches it is often sensible to assigns weights to the criteria.
These weighting values are usually very different and dependent on the require-
ments of the particular business scenario. Thus, the qualitative approach used in
this work does not aim to find the best of all evaluated solutions. Instead, the in-
tention is to compare different solutions and provide data to support the decision
making process.

The evaluation criteria were established based on common use cases and re-
quirements of responsive images. It was reasonable to categorize all criteria as ei-
ther functional requirements, non-functional requirements, or system prerequisites.
Even though system prerequisites are part of the non-functional requirements, they
were chosen to represent a separate category. The reason was to provide a more de-
tailed distinction and will be explained later in this section.

Functional Requirements: Use Cases

The functional requirements category consists of seven use cases. All use cases are
based on a document by the RICG [79]. The RICG was tasked to develop a stan-
dardized solution for responsive images. They created a list of use cases and re-
quirements as a foundation for their work. As their goal was to create a future-
proof standard, their list is very comprehensive. Not every use case is of equal rele -
vance to the developer community. Most available responsive images solutions try
to solve use cases one and two, which can consequently be considered the most de-
manded use cases. These two use cases – resolution-based selection and art direc-
tion – have already been introduced in the example at the beginning of Section 3.
Based on document of the RICG, the following describes the functional require-
ments for the evaluation in form of use cases. The possible rating options were cho-
sen to be no, poor, medium, wide, and full support.

39 Responsive Images

1. Resolution-based selection: This use case refers to choosing an image
file depending on the screen size of the client. Web developers want to pro-
vide images at multiple resolutions so that every device can request and
display the most appropriate size. This avoids wasting bandwidth and time
on loading image files which are (much) bigger than the client's screen.

2. Viewport-based selection: Viewport-based selection takes into account
that images are often not displayed with the full width of the viewport. A
characteristic of responsive designs is that the width of images can change
depending on the active CSS media query breakpoint. Therefore, it should
be possible to select images not only based on the screen or viewport size,
but also take the current breakpoint and its specified image width into ac-
count. [79]

3. DPR-based selection: Many smartphones and increasingly other devices
as well are shipped with HiDPI displays. Those are screens with a rela-
tively high pixel density of usually more than 240 PPI. HiDPI displays
have changed the way websites and images are rendered. Details are cov-
ered in Sections 2.2.5 and 2.5. The consequence is that HiDPI displays
should be served with higher resolution images as traditional (DPR=1)
screens. Otherwise, the images are upscaled by the DPR and do not take
advantage of the high resolution of HiDPI screens. Thus, a solution should
allow to consider the DPR when selecting an image. The solution should
also provide a way to inform the client about the DPR for which the re-
turned images are optimized. This is needed to render the images with the
correct size if no explicit display size was assigned to the image using CSS.
[39], [41], [79]

4. Art Direction: Responsive designs usually target many different devices
with a broad range of screen sizes. By using the fluid image technique, im-
ages automatically adapt to fit the layout. The scaling process inevitably
causes information to be lost. At worst, small objects in the image might
not be identifiable anymore after the scaling process. Especially if an im-
portant object of the image is affected, the image could lose its informative
purpose and become useless. Therefore, in addition to selecting images by

Figure 2: The art direction use case: A different
(cropped) image is used for smaller screens. [148]

40 Responsive Images

resolution, viewport and DPR, developers also want to serve content-wise
different images for each of the other use cases. This could mean a cropped
version of the main image or a different image altogether. This process of
author-based selection is refereed to as art direction. [79]

5. Match media types and features: This use case describes more refined
image selection based on device capabilities. For example, printers com-
monly work at resolutions of 600dpi or more – a lot higher than usual
screens. In order to print images sharp and clear, the browser should be
able to request images with a higher resolution for printing. Printers can
be targeted using the media type print. Other devices might require an
even more detailed selection using media features. Many e-book readers are
shipped with monochrome displays. After the conversion from color to
monochrome, many colors are not distinguishable anymore on these
screens. This can be an issue when colors hold important information, eg.
in diagrams. Authors want to provide an alternative image that is opti-
mized for these devices. This can ideally be solved using CSS media types
and features. Additionally, the upcoming CSS4 specs will implement new
media features which could open up new possibilities for this use case. [79]

6. Image format-based selection: At the moment the commonly used and
supported image formats in the web are JPG, PNG and GIF. However,
new formats with more features and better compression algorithms are
emerging. Some formats are very effective for particular image content, eg.
SVG for simple vector graphics. Developers want to choose the most suit-
able image format for every image. However, currently there is no reliable
method to check if a format is supported by the client's browser. This
leaves developers with using either JPG, PNG or GIF. A solution should
provide support to explicitly specify the image format of a resource and let
the browser chose one. [79]

7. User agent-based decisions: The are certain selection conditions that
the developer can not detect. For example the user's Internet connection:
How fast is it? Is it stable or a mobile network with a weak coverage? Is it
an expensive roaming connection? Other possible conditions would be the
processor speed or current battery level of the device. If the computing
power is very limited or the battery is almost empty, it might sensible to
deliver smaller images. To encounter this use case, the browser of the user
should have the possibility to select the best image based on the current
conditions and user-defined settings. [79]

41 Responsive Images

Non-Functional Requirements

A solution should support all six use cases, which comprise the functional require-
ments. Beside these, there are some more general, non-functional requirements [75],
[79]. The possible rating options were chosen to be low, medium, and high.

1. Browser Support: A solution should be supported by all major browsers.
If it is not supported by default, it should be possible to implement a
workaround for the given browser, eg. using a polyfill [74, p. 79]. Further-
more, a solution should be backwards compatible. It must not break exist-
ing websites or code and should be compatible to older browsers. If it is
not compatible with older browsers by default, it should be easy to imple-
ment a workaround. [75], [79]

2. Performance: A solution should be fast. Responsive image sources should
ideally be present already in the HTML document so that the browser's
lookahead parser can initiate preloading of images. Images should be re-
sponsive already at the first pageload. This means no time-consuming ac-
tions like extra HTTP requests should be needed before the solution works.
Furthermore, the HTTP responses generated by the solution should be
cacheable by proxy servers and CDNs, even when using the same URL for
different versions of a resource. [79]

3. Reliability: A solution should produce reliable and accurate results on all
devices if the browser is supported and the system prerequisites are ful-
filled. This requirement is greatly dependent on the quality of the available
device information. [75]

4. Integrability: A solution should be easily integrable into an existing sys-
tem or application. This is especially relevant for legacy websites which
should be made responsive without changing the code or markup.

5. Flexibility: A solution should not only statically fulfill the use cases. In-
stead, the webpage should also be updated on dynamic changes of the user
environment, eg. the viewport size or the screen orientation. The page
needs to be updated immediately without requiring a page reload. For ex-
ample, when a user turns the device from landscape to portrait mode, an-
other image resource might be needed – a common art direction use case.

6. Accessibility: A solution should allow content to be presented in an ac-
cessible way. This includes compatibility with HTML's accessibility fea-
tures, especially providing an alternative text for images using the alt at-
tribute. A solution should also allow the developer to write semantically
correct and valid HTML code. Images should be outlined as such, ideally
using the tag. Furthermore, the solution should not use meaningless

42 Responsive Images

placeholder images which are later replaced by the real image using JS. In
other words, a browser which does only load the HTML document and
with JS disabled should be able to render the page correctly including the
images. [79]

System Prerequisites

The system prerequisites requirement was chosen to be split into three individual
criteria. The presented solutions either require cookies, JS, or a server-sided script-
ing language; or a combination of such. A solution does ideally not have any of the
above system prerequisites. Cookies and JS are user-defined settings and are not
within the developer's reach of influence. In contrast, server-sided scripting lan-
guages run on the server of the website and can usually be installed or changed by
the system administrator. The availability of these system prerequisites may vary
depending on the target audience and the used hosting platform. A single systems
prerequisites criterion would not allow a thorough comparison of the evaluated so-
lutions. Therefore a separated inspection of cookies, JS, and server-sided logic was
found to be a reasonable approach. The possible rating options were chosen to be
needed and not needed.

1. Cookies: Does the solution need HTTP cookies on the client?
2. JavaScript: Does the solution need client-sided JS to work?
3. Server-side logic: Does the solution need server-side logic to work? This

mainly includes the requirement of server-sided scripting languages like
PHP, Python, or Ruby; but also any server-sided configuration, eg. for the
web server.

43 Responsive Images

3.3.3 Resulting Evaluation Framework

The below tables show the resulting evaluation framework. It consists of seven
functional requirements with each five rating options, six non-functional require-
ments with each three rating options, and three system prerequisites with each two
rating options.

Functional Requirements Rating Options

1. Resolution-based selection

2. Viewport-based selection

3. DPR-based selection

4. Art Direction

5. Match media types and features

6. Image format-based selection

7. User agent-based decisions

1. No support

2. Poor support

3. Medium support

4. Wide support

5. Full support

Table 1: Overview of functional requirements

Non-Functional Requirements Rating Options

1. Browser support

2. Performance

3. Reliability

4. Integrability

5. Flexibility

6. Accessibility

1. Low

2. Medium

3. High

Table 2: Overview of the non-functional requirements

System Prerequisites Rating Options

1. Cookies

2. JavaScript

3. Server-side logic

1. Needed (Yes)

2. Not needed (No)

Table 3: Overview of the system prerequisites

44 Responsive Images

3.4 Evaluation of Solutions

As we learned in Section 3.1, a native solution for responsive images is already
available. Once it is widely supported by all major browsers and older browsers are
less relevant, it would be the best solution for most use cases. Until that, other ap-
proaches have to be considered as well. This section evaluates the rather new na-
tive solution of HTML5 as well as five alternative methods according to the frame-
work defined in Section 3.3. This is done alongside with explaining the implementa-
tion principle using sample code. It is out of the scope of this work to describe the
implementation in great detail, but the concept is outlined for common use cases.

3.4.1 Overview

The following table shows the solutions that are evaluated in this work. They can
be categorized as server- or client-sided, based on whether the image URL or re-
source is selected and set on the server- or client-side. Both categories have similar
characteristics and their pros and cons, which are discussed in Section 3.2.

Server-Side Solutions Client-Side Solutions

1. User Agent Detection

2. Cookies

3. HTTP Client Hints

4. CSS Background Images

5. JavaScript

6. Native HTML5

Table 4: Overview of the selected solutions.

First of all, we look at approaches without using the new native srcset at-
tribute and <picture> element of Solution 6. As we saw earlier, the tag has
supported only one src attribute before responsive images were added to the specs.
This only value of the src attribute is set in the HTML code of the document.
There are two common methods to serve different src values to the client. We can
change the attribute on the client using JS or we can change the attribute dynami-
cally on the server before sending out the HTML code. The latter can be done via
server-side scripting languages like PHP or Python and is discussed first.

3.4.2 Solution 1: User Agent Detection

As we have seen before, Solutions 1, 2, and 3 mainly differ by the used method to
gather device information. The first solution utilizes an approach called user agent
detection. It is a method to draw conclusions about the user's device and browser
by examining the HTTP User-Agent header. The approach was invented to en-
counter the issue that the server does by default not know the client's capabilities.

45 Responsive Images

Screen resolution, connection speed, available input methods – none of these infor-
mation are sent via a HTTP request. HTTP Client Hints are a HTTP extension to
change that and are used by Solution 3. JS could help out here but let us assume
JS is not available. In this case the only useful available information is the HTTP
User-Agent header. It is an optional header that can be added to HTTP requests
by the browser. The header contains information about the client. Usually it in-
cludes the browser name and version, and the device's operating system. Some mo-
bile browsers also include the model name of the device. The following table shows
some typical user agent strings [95]:

Platform User Agent String

Apple iPhone with
iOS 5.1

Mozilla/5.0 (iPhone; CPU iPhone OS 5_1 like Mac OS X) AppleWebKit/534.46
(KHTML, like Gecko) Version/5.1 Mobile/9B179 Safari/7534.48.3

Windows 7 64bit
with Chrome

Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/43.0.2357.81 Safari/537.36

Windows 7 with
Internet Explorer 11

Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0; rv:11.0) like Gecko

Motorola Moto G
Mozilla/5.0 (Linux; U; Android 4.3; xx-xx; XT1032 Build/14.10.0Q3.X-28)
AppleWebKit/534.30 (KHTML, like Gecko) Version/4.0 Mobile Safari/534.30

Table 5: Examples of HTTP User-Agent headers

It can be seen that the contained information greatly varies between browsers and
platforms. A very simple user agent detection approach would be to only detect the
device category. Mobile devices mostly include the string “mobile” in their user
agent string. We can use this fact to determine if we are dealing with a mobile de-
vice. This can be helpful, but is not enough due to the great fragmentation of mo-
bile devices. More sophisticated approaches use the user agent string to query a so
called device database. These databases contain user agent strings for many (mo-
bile) devices and their characteristics. Ideally, the query returns the exact device
model and all its capabilities. A popular database is called WURFL, maintained by
ScientaMobile [96].

User agent detection is the subject of many controversial discussions. It can be
helpful for the developer but has some drawbacks and is not reliable for various
reasons. There is no specification what a user agent string has to include. It is re-
markable that all of the above user agent strings begin with “Mozilla/5.0”, even
when not running a browser from Mozilla. This is one of many remains from the
browser wars era. Back then, the Mozilla browser supported more features than
other browsers. Some web servers were configured to send an enhanced version of
the website to the modern Mozilla browser, based on the user agent string. Eventu-
ally other browses caught up and implemented the new features as well. Their ven-
dors also wanted the enhanced websites for their users and started spoofing the

46 Responsive Images

user agent string by adding “Mozilla”. This and some similar events led to the user
agent string becoming “[...] a complete mess, and near useless, and everyone pre-
tended to be everyone else, and confusion abounded” [97]. User agent spoofing is
also implemented as a “feature” in some mobile browsers. These browsers offer a
setting like “Show full website” to display the desktop version rather than the mo-
bile version of a website. This is partly done by spoofing the user agent string to
match a desktop system. [74, p. 48]

Additionally, many user agent strings do not contain any information that can
be used to determine the screen resolution. Only some mobile devices include an
exact model tag that can be queried against a device database. The databases can
be outdated and might not be free of charge. As a result of these issues, user agent
detection often leaves developers with only knowing the device category, if at all.
This is not sufficient because of the great fragmentation of devices and resolutions.
[74, p. 48]

That said, server-side user agent detection can sometimes be a helpful addition
for being responsive but should never be the sole solution. It can be used as a fall-
back when other solutions fail, eg. when JS is not available while using Solution 2.
[98]

Implementation

As the last paragraphs suggested, parsing a user agent string is a hard task. It is
recommended to utilize ready-to-use implementations. The following shows two
sample implementations. Earlier we learned that server-sided approaches are capa-
ble of serving different images for the same URL. To do so, we need to configure
the web server to not directly serve image requests but forward them to a prede-
fined script. For the popular Apache web server, the mod_rewrite module can be
configured to do so with the following code. [99]

The above listing configures the Apache web server to forward all requests end-
ing with .jp(e)g, .gif, or .png to a script called image_handler.php instead of serv-
ing the requested file directly. Once the image request forwarding is set up, we can
start with the implementation of the image handler script. First, we look at a very
simple mobile device category detection to demonstrate the approach. It is inspired
by Matthew Wilcox's Adaptive Images approach, which is also used as a sample
implementation for Solution 2 [99].

<IfModule mod_rewrite.c>
 RewriteEngine On # activate the RewriteEngine
 RewriteRule \.(?:jpe?g|gif|png)$ image_handler.php # rewrite rule, based on file extensions
</IfModule>

Listing 9: Apache configuration to forward image requests to a custom script.

47 Responsive Images

More sophisticated implementations can detect more than just the device category.
They also not only consider the user agent string, but other headers which can be
attributed to certain browsers or platforms. One of these implementations is the
PHP library Mobile Detect, which supports a wide range of detections [100]. The
following listing demonstrates its use to target different devices and browers.

<?php
 // check if user agent string contains “mobile”
 if (stripos($_SERVER['USER_AGENT_STRING'], 'mobile') !== false) {
 $imageDirectory = '/images/mobile/'; // mobile device
 }
 else {
 $imageDirectory = '/images/desktop/'; // no mobile device, assume desktop system
 }

 // get the requested filename and its path
 $requestedFile = basename(parse_url(urldecode($_SERVER['REQUEST_URI']), PHP_URL_PATH));
 $filePath = $imageDirectory . $requestedFile;

 // set the Content-Type HTTP header to image/png, image/gif or image/jpeg
 $extension = strtolower(pathinfo($filePath, PATHINFO_EXTENSION));
 if (in_array($extension, array('png', 'gif', 'jpg, 'jpeg'))) {
 header("Content-Type: image/" . ($extension == 'jpg' ? 'jpeg' : $extension));
 }

 // set HTTP headers to prevent caching by proxy servers, but allow browser caching
 $browserCacheTime = 86400 * 7; // one week
 header("Cache-Control: private, max-age=" . $browserCacheTime);
 header('Expires: ' . gmdate('D, d M Y H:i:s', time() + $browserCacheTime) . ' GMT');
 header('Content-Length: ' . filesize($filePath));

 // send out image
 readfile($filePath);
 exit();
?>

Listing 10: Using user agent detection to serve different images based on the device category.

<?php
 require_once 'Mobile_Detect.php';
 $MobileDetect = new Mobile_Detect;

 if ($MobileDetect->isMobile()) { /* code for mobile devices */ }
 if ($MobileDetect->isTablet()) { /* code for tablet devices */ }
 if ($MobileDetect->isAndroidOS()) { /* code for Android devices */ }
 if ($MobileDetect->is('Chrome')) { /* code for Google Chrome browser */ }

 /* image handling code should be inserted here */
?>

Listing 11: Using the Mobile Detect PHP library for device and browser detection.

48 Responsive Images

Evaluation

The evaluation was performed according to the evaluation framework that was de-
fined in Section 3.3. The comment column explains the assigned rating.

Functional Req. Support Comment

Resolution-based
selection

Poor

Mobile devices which send a model tag can be handled
decently but for most desktop systems there is no
information about the screen size and thus, no delivery of
responsive images possible.

Viewport-based
selection

No
The size of the viewport and especially the display width of
the images can not be known on the server-side by only
using user agent detection.

DPR-based selection Poor

Mobile devices which send a model tag can be handled
decently but for most desktop systems there is no
information about the screen size and thus, no selection
based on the DPR is possible. No method to inform the
device about the content's DPR. Thus, the display size of
the image has to be specified within HTML or CSS.

Art Direction Poor
Only very simple art direction based on the screen
resolution, if available. No support for CSS media queries
and no dynamic changes without a reload of the page.

Match media types
and features

No –

Image format-based
selection

Medium

The browser version in the user agent string can be used to
determine if it supports a specific image format.
Additionally, the HTTP Accept header sent by the client
could provide information about supported image formats.

User agent-based
decisions

No
There is no standardized way to instructing the server to
deliver a certain version (eg. small, to save bandwidth) of
images.

Table 6: Evaluation results of the functional requirements of Solution 1.

49 Responsive Images

Non-Func. Req. Rating Comment

Browser support High

User agent detection only makes use of the user agent
string, which is by default sent by every major browser.
Browser support can be considered very high, not taking
into account browsers which send a user agent string
without containing any valuable information (see
Reliability).

Performance Medium

As for all server-sided approaches, it is possible to (a) use
the same URL for different image versions in a HTML or
CSS document or (b) directly insert the URL of the most-
appropriate image into the HTML or CSS on the server-
side. Both results in the image URLs being available
directly within the HTML code. Thus, the browser's
lookahead parser can initiate image requests very early.
Responses can not be cached by proxies or CDNs.

Reliability Low

The impact of this result can not be stressed too much. The
reliability of user agent detection for responsive images is
very low. Mobile devices which send a model tag can be
handled decently but for most desktop systems there is no
information about the screen size and thus, no delivery of
responsive images possible.

Integrability High

User agent detection can easily be integrated into an
existing application without changing the markup. The
server can handle the image selection and the generation of
different image versions.

Flexibility Low
Reacting to dynamic changes of the user environment by re-
issuing image requests is not possible. JS would be needed
to add that functionality.

Accessibility High

The tag and its alt attribute to provide an alternative
text can be used to correctly outline the content as an
image. The image source can be placed into the HTML
document directly on the server, resulting in semantically
correct HTML code.

Table 7: Evaluation results of the non-functional requirements of Solution 1.

System Prereq. Needed Comment

JavaScript No
JS is not needed for server-sided user agent detection, but it
is common practice to extend the implementation using JS.

Server-side Logic Yes
Server-sided logic is needed to handle the entire process of
making images responsive. Thus, a server-sided scripting
language and a configurable web server is required.

Cookies No –

Table 8: Evaluation results of the system prerequisites of Solution 1.

50 Responsive Images

3.4.3 Solution 2: Cookies

It was mentioned earlier that Solution 1, two and three mainly differ in their
method of getting device information. Instead of using the user agent string, this
solution utilizes client-sided JS to retrieve device capabilities. The device informa-
tion have to be transferred from the client to the server for the selection of the best
image. An obvious approach might be to send a simple HTTP GET request to the
server and include the device information as a parameter. If we think of our re-
quirements, that is not a good idea though. We want to deliver responsive images
as fast as possible, ideally already for the first page load. By the time the JS code
has been executed and the GET request has been sent, the browser will most likely
have loaded (possibly not best-fitting) images already. This solution solves the is-
sue by saving the device information to a cookie using JS. The cookie with the de-
vice information is automatically included to every request to the server. The im-
age handler script on the server can use the information to select and deliver the
best image. The JS code to set the cookie is inserted very early in the HTML docu-
ment to ensure its execution before the browser initiates any image requests. [99]

A downside of cookie-based solutions is intermediary caching. When different
images are served for the same URL, proxy servers have to be informed how the
images vary and when to deliver which image. In theory, this can be done using
the HTTP Vary header. This header contains the name of another HTTP header
which was considered to select a resource. In our case, the correct Vary header
would be Vary: Cookie. However, most websites create more cookies than just our
device information cookie. The result are practically endless combinations of
Cookie header values. As a result, proxy severs can not make practicable use of a
Vary headers set to Cookie. The same issue applies to the previous solution, as
there are thousands of different used user agent strings.

Another issue of this solution is the limitation to one domain. This is due to the
same-origin policy concept of web applications, which also applies to cookies. It
states that a cookie for a certain domain can only be set by JS code or HTTP re -
sponses of the same domain. Furthermore, a cookie set for a certain domain will
only be included to requests to the same domain. For the current solution, the JS
code to set the cookie with the device information has to be inserted directly within
the HTML code of the website. Thus, the cookie will only be included to requests
to the same domain. This requires that all images which are meant to be respon-
sive have to be delivered by a server that is on the same domain. This issue could
prevent the solution from being used with 3rd party CDNs that run on a different
domain. [101]

51 Responsive Images

Implementation

A commonly used implementation of a cookie-based responsive images solution is
Adaptive Images by Matthew Wilcox [99]. It acts as a foundation for the following
explanations. As for Solution 1, it is required to configure the web server to for-
ward image requests to a custom script. This script comprises the main part of
Adaptive Images and is written in PHP. Before this script can work as intended,
the cookie with device information has to be set. JS can be used to do so using the
document.cookie property of the DOM:

The above JS code sets a cookie named resolution to the screen width or height
of the client, whichever value is higher. The code can be wrapped by a <script> tag
to be inserted in a HTML document. It should be inserted very early in the <head>
tag of the document to ensure early execution. The used JS property is
screen.width respectively screen.height. Both properties are standardized, but
browser implementations vary. Most current mobile browsers return the resolution
of the ideal viewport in CSS pixels. Older mobile browsers and desktop browsers
return the physical screen resolution in device pixel. The inconsistent implementa-
tion of screen.width and screen.height can produce unexpected or wrong results in
some browsers. Detailed compatibility tables for many browsers can be found at
[50], [102]. [49]

The above JS code only stores the screen size in the cookie. Other characteris-
tics can be added if needed. The Adaptive Images script supports image selection
based on the DPR. The following listing shows how to store not only the screen
size but also the DPR in the cookie.

So far we have configured the web server to forward image requests and set the
cookie on the client using JS. It is now time to take a look at the Adaptive Images
image handling script. It allows the developer to specify the used CSS breakpoints
within the image handler. The script then takes the cookie-stored screen size of the
user and selects the closest breakpoint dimension. This dimension is determined as
the ideal image width. The script is capable of creating scaled versions of the re-
quested image to match the breakpoint widths. All created versions are cached on
the server to prevent recurring rescaling on subsequent requests. The selected or

document.cookie='resolution='+Math.max(screen.width,screen.height)+'; path=/';

Listing 12: JS code to store a cookie named resolution and the value of the screen size.

document.cookie = 'resolution=' + Math.max(screen.width,screen.height) +
 ("devicePixelRatio" in window ? "," + devicePixelRatio : ",1") + '; path=/';

Listing 13: The above JS snippet, but enhanced by storing the client's DPR as well.

52 Responsive Images

created image is then delivered to the client. Adaptive Images sets the HTTP
Cache-Control header to private. This is to prevent intermediary proxy servers
from caching the response for the earlier mentioned reasons. [99]

It can happen that the cookie is not available to the script. This might either be
due to the user having cookies disabled in the browser or due to a race-condition
when setting the cookie. The latter occurs when the lookahead parser is not waiting
until the JS code gets executed to set the cookie, which is the case at least in Inter-
net Explorer 9 [103]. Adaptive Images handles missing cookies by implementing a
simple user agent detection to determine if it is dealing with a mobile device. If so,
it chooses the lowest resolution image version automatically. This is not ideal, as
mobile devices do not necessarily have a low screen resolution. However, the server
somehow has to select an image and it can yield better results than always sending
out the biggest image. Adaptive Image's workaround also gives an idea of how dif-
ferent solutions can be combined to complement each other or serve as a fallback.

The Adaptive Images script requires JS to be enabled, but it also provides a
fallback for users without JS. CSS media queries are used to trick the browser into
requesting a fictitious background image. The background image URL contains the
upper limit of the media query width range as a GET parameter. The following
listing shows how to implement the fallback on the client-side.

The requested cookie.php script creates the cookie from the server-side without
needing JS. However, this workaround harms the performance, as the CSS parsing
and sending of the image request takes too much time for the cookie to be set be-
fore the first image requests. In consequence, responsive images can only be deliv-
ered for subsequent requests after the first page load. The evaluation was per-
formed assuming that JS is required and available, but this non-JS workaround is
shown anyway for the sake of completeness. [99]

<style>
 @media only screen and (max-device-width: 479px) {
 html {
 background-image:url(cookie.php?maxwidth=479);
 }}
 @media only screen and (min-device-width: 480px) and (max-device-width: 640px) {
 html { background-image:url(cookie.php?maxwidth=640);
 }}

 /* more media queries can be added here to increase precision. */

</style>

Listing 14: Using CSS media queries to initiate requests to transmit the screen width and set a
cookie.

53 Responsive Images

Evaluation

The evaluation was performed according to the evaluation framework that was de-
fined in Section 3.3. The comment column explains the assigned rating.

Functional Req. Support Comment

Resolution-based
selection

Wide
Supported, but reacting to dynamic changes of the user
environment is not possible without using JS events to
reissue image requests.

Viewport-based
selection

No
The display width of the images can not be known on the
server-side by only using cookies.

DPR-based selection Medium

Supported, but reacting to dynamic changes of the user
environment is not possible without using JS events to
reissue image requests. No method to inform the device
about the content's DPR Thus, the display size of the image
has to be specified within the HTML or CSS code.

Art Direction Medium

Art Direction based on all JS-detectable device
characteristics is possible. Media queries are supported using
the JS function matchMedia. However, no dynamic reaction
to changes is supported.

Match media types
and features

Medium

The JS function matchMedia can be used to evaluate a CSS
media queries. The result can be stored in the cookie to
deliver images based on it. No native selection by the
browser possible, eg. when printing a document.

Image format-based
selection

Medium
JS can be used to determine support for image formats.
Additionally, the HTTP Accept header sent by the client
could provide information about supported image formats.

User agent-based
decisions

No
There is no standardized way of instructing the server to
deliver a certain version (eg. small, to save bandwidth) of
images.

Table 9: Evaluation results of the functional requirements of Solution 2.

54 Responsive Images

Non-Func. Req. Rating Comment

Browser support High
As long as the client-sided system prerequisites are met (JS
and cookies), browser support is very good.

Performance Medium

As for all server-sided approaches, it is possible to (a) use
the same URL for different image versions in a HTML or
CSS document or (b) directly insert the URL of the most-
appropriate image into the HTML or CSS on the server-
side. Both results in the image URLs being available
directly within the HTML code. Thus, the browser's
lookahead parser can initiate image requests very early.
Responses can not be cached by proxies or CDNs. A race-
condition might prevent the first image requests from being
processed correctly and can slow down the page load time.
Responses can not be cached by proxies or CDNs.

Reliability Medium

The screen.width property of the DOM is implemented
differently by browsers. The solutions mostly produces
decent but not ideal results. This can negatively affect the
correct selection of images.

Integrability High

This solution can easily be integrated into an existing
application without changing the markup. The server can
handle the image selection and the generation of different
image versions.

Flexibility Low

Reacting to dynamic changes of the user environment by re-
issuing image requests is possible using JS events, but
cumbersome to implement. The available device
characteristics are limited to what can be retrieved using JS.

Accessibility High

The tag and its alt attribute to provide an alternative
text can be used to correctly outline the content as an
image. The image source can be placed into the HTML
document directly on the server, resulting in semantically
correct HTML code.

Table 10: Evaluation results of the non-functional requirements of Solution 2.

System Prereq. Needed Comment

JavaScript Yes
JS, Server-Side Logic and cookies are each a key component
of this solution. JS is used to retrieve the device
characteristics and to save them in a cookie.

Server-Side Logic Yes
Server-sided logic is needed to handle the entire process of
making images responsive. Thus, a server-sided scripting
language and a configurable web server is required.

Cookies Yes Cookies are needed to store the device characteristics.

Table 11: Evaluation results of the system prerequisites of Solution 2.

55 Responsive Images

3.4.4 Solution 3: HTTP Client Hints

Solution 1 and 2 utilized rather hacky approaches provide let the server with de-
vice characteristics. Solution 3 makes use of a more sophisticated and standardized
approach called HTTP Client Hints. It extends the HTTP protocol by a set of
headers which hold information about the device. It will eventually be standardized
as a Request for Comments (RFC) document and is currently in draft status [104].
The following headers are currently available to be added by the client [105]:

1. DPR (device pixel ratio): This header contains the current DPR of the
client. Every screen has a default, fixed DPR. However, on desktop sys-
tems the value changes when the user zooms the content. Enlarging the
content (zooming in) increases the DPR while zooming out decreases the
DPR.

2. Width: This header advertises the width in CSS pixels at which the re-
source will be displayed. The browser can derive the width from the
's width or sizes attribute. CSS declarations are not planned to be
taken into account as stylesheets are usually not yet available when the
lookahead parser encounters the image. If the display width of the resource
can not be determined, the browser should use the viewport width.

3. Viewport-Width: This header indicates the current viewport width of
the client in CSS pixels. On desktop systems, this value changes when the
user resizes the browser window or zooms the content. The change due to
zooming is opposed to the DPR: zooming in decreases the viewport width
while zooming out increases the viewport width.

4. Downlink: This header contains the maximum speed of the client's net-
work connection in megabits per second (Mbps). The possible values are
derived from W3C's Network Information API, which defines a table for
many different connection types like GSM, UMTS, WiFi, Ethernet, and
more. It should be noted that the indicated speed always refers to the max-
imum possible speed of the underlying technology. The actual current
speed might be (much) slower. Thus, the benefits of this header are limited
and its final implementation is still unclear.

5. Quality (planned): This header contains a quality keyword to let the
client indicate which resource quality it prefers. It is a form of content ne-
gotiation and has diverse use cases. The user (agent) may prefer resources
of “low” quality because of a slow network connection or a mobile plan with
limited bandwidth. This header was in the draft document of the specifica-
tion but has been removed again due to its missing definition of possible
quality keywords and their meaning. It is planned to be added again after
a revision.

56 Responsive Images

These headers allow the client to inform the server about the client's character-
istics relevant to responsive images. It is up to the user agent which headers are in-
cluded in a request. The current draft suggests to only include headers on an opt-in
basis. This means the client should only send the headers after the server has ad-
vertised support for them. The server does that by adding the CH-Accept header
containing the supported client hints to its responses. The opt-in mechanism is
used to avoid the overhead of sending client hints when the server does not support
or use them anyway. [104]

An advantage of all server-sided approaches is their easy integration into exist-
ing applications. This is especially true for HTTP Client Hints. No changes to the
markup or the application logic are required. A solution can be implemented di-
rectly into web servers by 3rd party plugins or modules. The same applies to inter-
mediary proxy servers. Such plugins could handle the entire process – image selec-
tion, optionally scaling, and delivery – without making any changes to the underly-
ing application. This makes HTTP Client Hints very interesting for legacy applica-
tions and websites. Currently, no such plugins are yet available though. As an al-
ternative, a custom image handling script as used for solutions one and two can be
used as well. This again requires to configure the web server to forward image re-
quests to a custom script.

The other covered server-sided solutions suffered from caching issues when de-
livering different images for the same URL. This issue can be overcome with HTTP
Client Hints. If the server uses one or more hints to select a resource, the server
has to include the Vary header in its response. The Vary header indicates which re-
quest headers were considered to select the resource. For example, if the server se-
lects a resource based on the Width and DPR headers, it must include a Vary:
Width, DPR header in its response. The optional Key header can be used to provide
more detailed information. Proxy servers use the Vary and Key headers to learn
about the resource characteristics and when to send which resource. [106]

A big disadvantage of HTTP Client Hints is its currently poor support by
browsers and web servers. At the moment, no major browser supports them by de-
fault. Google's Chrome browser has limited support in its developer version
Chrome Canary. Some community members, especially RICG member Yoav Weiss,
put a lot of effort in shipping an implementation to the Blink and WebKit engine.
However, there are ongoing discussions on the various engine and browser bug
trackers about how (and if) HTTP Client Hints should be implemented [107]–[110].
Some argue that the draft spec is not ready for implementation yet and that there
are too many open issues. However, an implementation in Blink looks promising
[111]. It would provide support for Chrome and Opera. The implementation status
for Mozilla's Gecko engine used by Firefox is “unconfirmed” [112]. Microsoft's cur-
rent implementation status for Internet Explorer is “under consideration” [113].

57 Responsive Images

Implementation

The HTTP Client Hints specification is still in draft status. At the time of writing,
there are no available implementations for web servers or applications. Implemen-
tations are likely to be released after the first browser(s) support HTTP Client
Hints. An implementation could work very similarly to those of solutions one and
two. The main difference with HTTP Client Hints is that the device characteristics
are transmitted via HTTP headers instead of cookies or the user agent string. The
following listing shows how to access the respective HTTP headers using PHP.

HTTP Client Hints is the only server-sided solution that includes a method to
inform the client for which DPR the returned content is optimized. The client
needs this information to render the image with the correct size, if no explicit
width and height was assigned to the image using CSS. The HTTP Client Hints
specs provide the Content-DPR header to do that. The following two listings of a
HTTP conversation will help understanding. First, the client requests an image
called image.jpg and adds the DPR and Width client hints.

The client advertises the server that it wants to display the image with 160 CSS
pixels wide and a DPR of 2. Thus, the ideal image would have an intrinsic size of
320 (160×2) pixels. If the server has several image versions available, it should se-
lect the one which closest matches the client hints. Alternatively, the server can
generate an image specifically for the client by scaling a high resolution version to
fit the client's preferences. The server then responds with the image and adds the
Content-DPR header to indicate that the client hints have been considered. The
following listing shows the response to the above image request. The Content-DPR
header informs the client that the resource is optimized for a DPR of 2. The result
is that the client does not scale the image anymore and uses a DPR of 1 to render

<?php
 $width = $_SERVER['HTTP_WIDTH'];
 $devicePixelRatio = $_SERVER['HTTP_DPR'];
 $viewportWidth = $_SERVER['HTTP_VIEWPORT_WIDTH'];

 /* image handling code should be inserted here */
?>

Listing 15: PHP Code to retrieve HTTP headers sent by the client.

GET /image.jpg HTTP/1.1
User-Agent: Some Browser
Accept: image/webp, image/jpg
DPR: 2.0
Width: 160

Listing 16: A sample HTTP request for an image with enabled HTTP Client Hints.

58 Responsive Images

it. The listing also shows how to use the Vary header to allow intermediary
caching. The server sets the Vary header to “DPR, Width” to indicate that the re-
sponse was chosen based on the headers DPR and Width. [104]

Other than that, an image handler script could work very similarly to Adaptive
Images [99], a popular sample implementation of Solution 2.

HTTP/1.1 200 OK
Server: Apache
Content-Type: image/jpg
Content-Length: 75645
Vary: DPR, Width
Content-DPR: 2.0
[blank line to separate headers and content]
[image data follows here]

Listing 17: A sample response to Listing 16, with the Content-DPR and Vary headers set.

59 Responsive Images

Evaluation

The evaluation was performed according to the evaluation framework that was de-
fined in Section 3.3. The comment column explains the assigned rating.

Functional Req. Support Comment

Resolution-based
selection

Wide
Supported, but reacting to dynamic changes of the user
environment may be limited. It is up to the user agent to re-
request an image when the environment changes.

Viewport-based
selection

Medium

Supported, if the sizes or width attribute of tags is set
so that the browser can determine the display width of the
image. Reacting to dynamic changes of the user
environment may be limited. It is up to the user agent to re-
request an image when the environment changes.

DPR-based selection Wide
Supported, but reacting to dynamic changes of the user
environment may be limited. It is up to the user agent to re-
request an image when the environment changes.

Art Direction Medium

Art direction based on the available client hints (Width,
DPR) is possible, but not more. HTTP Client Hints are
designed to be combined with the native <picture> element
if art direction is needed.

Match media types
and features

No
The specification does not provide headers to inform the
server about the client's media type or features.

Image format-based
selection

Medium
The solution is not able to explicitly indicate the content
type of images, but the HTTP Accept header can be used
for content negotiation.

User agent-based
decisions

Medium
A header to indicate a preferred resource quality is planned
in the specification. However, the server decides which
resource is delivered and the user agent can not choose.

Table 12: Evaluation results of the functional requirements of Solution 3.

60 Responsive Images

Non-Func. Req. Rating Comment

Browser support Low

At the time of writing no major browser or web server
supports HTTP Client Hints. Support is expected for Blink
(Chrome and Opera), Internet Explorer's status is „under
consideration” and Firefox's status is „unconfirmed“.

Performance High

As for all server-sided approaches, it is possible to (a) use
the same URLs for images in a HTML document or (b)
directly insert the URL of the most-appropriate image on
the server. Both results in the image URLs being available
directly within the HTML code. Thus, the browser's
lookahead parser can initiate image requests very early.
Responses can be cached by proxies and CDNs.

Reliability High
HTTP Client Hints produce reliable and accurate results if
it is supported by both the browser and the web server.

Integrability High

HTTP Client Hints can easily be integrated into an existing
application without changing the markup. The server can
handle the image selection and the generation of different
image versions.

Flexibility Medium

Re-requesting an image when the user environment changes
is up to the user agent according to the draft specification.
Another specification that documents implementation
details of browsers is planned.

Accessibility High

The tag and its alt attribute for an alternative text
can be used to correctly outline the content as an image.
The image source can be placed into the HTML document
directly on the server, resulting in semantically correct
documents.

Table 13: Evaluation results of the non-functional requirements of Solution 3.

System Prereq. Needed Comment

JavaScript No
JS is not needed for HTTP Client Hints, but it could be
used to extend to solution.

Server-Side Logic Yes
Server-sided configuration (and a scripting language) is
needed as image selection and delivery is handled by the
web server or a custom script within the application.

Cookies No –

Table 14: Evaluation results of the system prerequisites of Solution 3.

61 Responsive Images

3.4.5 Solution 4: CSS Background Images

After covering three server-sided solutions it is time for the client-sided solutions.
The first solution we look at are CSS Background Images. It is covered first be-
cause it is based on CSS media queries, which are needed again for Solution 5 and
6. The switch from the server to the client-side is not the only change. CSS Back-
ground Images is also the only evaluated solution which does not use HTML's
 tag to display images. Instead, the background image feature of CSS is used,
which is a fundamentally different way to display images on websites. As the name
suggests, images implemented this way are displayed in the background of the ac-
tual content. There are several CSS properties to adjust the appearance of back-
ground images. CSS background images do not require a special HTML tag and
can be applied to any HTML element. Using CSS background images instead of
foreground images based on the tag goes along with several advantages and
disadvantages.

The main advantage is that media queries can be used to conditionally set
background images. CSS media queries are covered in Section 2.4.2 and in the fol-
lowing Implementation Section. They allow to select images based on the viewport
width, DPR, screen type, and much more.

The relevant CSS background image properties and media queries are very well
supported by all major browsers [114]. Only Internet Explorer 8 and below does
not support media queries. However, support for most media features can be added
using the Media.match polyfill [115]. Older Safari and Android browser versions
and Internet Explorer 9 to 11 do not support nested media queries [114]. Nested
media queries are not required for any of the presented methods, but they allow for
simpler and easier to read CSS code.

The CSS Background Images solution provides a good performance. The CSS
declarations can be included directly within the HTML document. In consequence,
the declarations are available as soon as the HTML file has been loaded. If the sep-
aration of markup and style is important, a separate CSS file can be used. This in -
troduces some delay because the file has to be requested before any images can be
fetched and displayed. All media queries for one image should be written to be mu-
tually exclusive. This prevents the browser from downloading more than one image
version. [116]

A downside of CSS background images is that less accessibility features are
available. There is no equivalent to 's alt attribute to provide an alternative
text for visually impaired users or when the image request fails. Furthermore, CSS
background images are not outlined as an image and can be applied to any HTML
element. The result is a lack of semantics. While this is less of an issue for decora-
tive images, contentual images should always be outlined as images to provide se-
mantically correct code.

62 Responsive Images

Another drawback of CSS background images is their cumbersome implementa-
tion. The required mutually exclusive CSS media queries are rather complex to
write and hard to read. Media queries can not be applied directly to an element
within the HTML code as inline CSS. Instead, they have to be applied using a
<style> tag or a separate CSS file. This maintainability difficulties are especially
relevant on websites with many images. Furthermore, it is inconvenient to add me-
dia query-based CSS declarations queries using JS. This is needed when responsive
images are dynamically added to a page without performing a reload of the page.

Implementation

CSS background images can be applied to any HTML element. The following list-
ing shows a simple declaration for a background-image which is automatically
scaled (and cropped) to fill the entire target element.

The following shows a list of CSS properties that are relevant to background im-
ages [14, p. 240].

1. background-image: This property sets the image source. The source can
be provided as an URL or data URI scheme. Both methods require the
value to be wrapped with the CSS url() function.

2. background-repeat: This property specifies if the image should be hori-
zontally or/and vertically repeatedly displayed if the HTML element is big-
ger than the image. Possible values are no-repeat, repeat-x, repeat-y, and
repeat, which is the default.

3. background-size: This property allows to set the display size of the back-
ground image in CSS pixels. It accepts absolute and relative units for the
horizontal and vertical axis. This property is needed to correctly display
DPR-optimized images by specifying the desired dimensions in CSS pixels.
This prevents the browser from upscaling the image by the DPR.

Furthermore, the keywords cover and contain can be used to automati-
cally adjust the image to fill (cover) or fit within (contain) the parent ele-
ment by cropping and rescaling it.

#some-element {
 background-image: url('my-image.jpg');
 background-repeat: none;
 background-size: cover;
 background-position: bottom right; /* let us assume the bottom right part of the image
 contains important information and should not be
 cropped by the background-size: cover; declaration */
}

Listing 18: A simple example of a CSS background image.

63 Responsive Images

4. background-position: This property allows to set the position of the im-
age relatively to the containing element. Two space-separated values or one
for both the horizontal and vertical position are accepted. Possible values
can be relative and absolute vales as well as the keywords top, left, right,
bottom. This property is usually not needed for responsive images but is
listed here for completeness. It is commonly used for a technique called
CSS sprites and together with the background-size property to align
fullscreen images.

For a full coverage of all properties and their syntax related to background im-
ages, [14, p. 240] is recommended. CSS background image declarations can easily
be wrapped within media queries to deliver responsive images. The following list
gives an overview of the relevant media features which can be used in media
queries [70].

1. (min-/max-)width: The width media feature is evaluated against the
width of the viewport in CSS pixels. It is almost always used with the min-
or max- prefix to target devices below or over a certain viewport width. By
combining a min-width and max-width media feature with the and key-
word, a range of widths can be targeted.

The CSS specs also define a device-width media feature which should be
evaluated against the screen width in theory. However, in practice it is
sometimes the actual screen width in device pixels and sometimes the
width of the ideal viewport. Thus, it is recommended to use the width me-
dia feature. [70]

2. (min-/max-)resolution: The resolution media feature allows to target
certain DPRs. The dots per ‘px’ (dppx) unit should be used to avoid hav-
ing to convert the DPR to the dpi unit. [70]

3. orientation: The orientation media feature can be used to check if a de-
vice is in landscape or portrait mode. If the height resolution is greater or
equal than the width, the device is in portrait mode, and in landscape oth-
erwise. [70]

4. monochrome: This media feature can be used to target monochrome
screens as they are for example commonly used for e-book readers. They
can be evaluated with an optional number, which indicates the number of
bits used for each pixel. [70]

Responsive images can easily be implemented using these media features. It is
important that the queries are mutually exclusive, which means that only one me-
dia query evaluates to true at a given moment [116]. This is to prevent the browser
from loading more than one image. The following listing shows an example of mu-

64 Responsive Images

tually exclusive media queries to deliver responsive images for different viewport
widths.

Implementing a DPR-based selection is more complicated. The WebKit engine was
one of the first engines which implemented a media feature for the pixel density of
a screen. They called the media feature device-pixel-ratio and it had to be pre-
fixed with “-webkit-”. Eventually the CSS specs caught up and standardized the
resolution media feature. For compatibility with Safari and older browsers, it is
recommended to provide all (prefixed) versions in the CSS declarations, as shown
in the following listing. [117]

The recommended, most convenient and future-proof media feature is resolution to-
gether with the dppx unit, which uses the same metric as the DPR values we have
seen in this work. However, the dppx unit is not supported by Internet Explorer 11

#an-image {
 /* general declarations valid for all viewport sizes go here */
}

/* target screens up to 320px in width */
@media all and (max-width: 320px) {
 #an-image { background-image: url('image-320px.jpg'); }
}

/* target screens of 321 up to 640px in width */
@media all and (min-width: 321px) and (max-width: 640px) {
 #an-image { background-image: url('image-640px.jpg'); }
}

/* target screens of 641 up to 1200px in width */
@media all and (min-width: 641px) and (max-width: 1200px) {
 #an-image { background-image: url('image-1200px.jpg'); }
}

/* target screens larger than 1200px in width */
@media all and (min-width: 1201px) {
 #an-image { background-image: url('image-1920px.jpg'); }
}

Listing 19: Media queries to implement resolution-based selection with CSS background images.

@media
only screen and (-webkit-min-device-pixel-ratio: 2),
only screen and (min--moz-device-pixel-ratio: 2),
only screen and (-o-min-device-pixel-ratio: 2/1),
only screen and (min-device-pixel-ratio: 2),
only screen and (min-resolution: 192dpi),
only screen and (min-resolution: 2dppx) {
 /* Declarations for DPR=2 screens go here */
}

Listing 20: Target DPR=2 screens using prefixed media feature versions for different browsers.

65 Responsive Images

and below [118]. The alternative is to use the dpi unit, where 96 dpi equal a DPR
of 1, 192 dpi a DPR of 2 and so on.

Another issue with DPR-based media queries is writing mutually exclusive
queries. Using the dppx unit, floating point numbers are needed to correctly cover
the desired ranges. Browsers use different precisions when working with fractions in
CSS [119]. This could possibly lead to unexpected behavior and should be tested
accordingly. The following listing shows DPR media queries to implement a DPR-
based selection using CSS. The prefixed media feature versions have been omitted
for better readability.

The match media type and features use case is implemented the same way as the
above listings. The monochrome media feature can be used to target devices with
monochrome screen, eg. e-book readers.

#an-image {
 background-size: 800px 600px;
}

@media only screen and (min-resolution: 1.0dppx) and (max-resolution: 1.25dppx) {
 #an-image {
 background-image: url('image-1x.jpg');
 }
}
@media only screen and (min-resolution: 1.26dppx) and (max-resolution: 1.999dppx) {
 #an-image {
 background-image: url('image-1.5x.jpg');
 }
}
@media only screen and (min-resolution: 2dppx) {
 #an-image {
 background-image: url('image-2x.jpg');
 }
}

Listing 21: Using media queries to implement DPR-based selection with CSS background images.

@media all and (monochrome) and (orientation: landscape) {
 #an-image {
 background-image: url('image-monochrome-landscape.jpg');
 }
}

Listing 22: Using media queries to target monochrome screens in landscape mode.

66 Responsive Images

Evaluation

The evaluation was performed according to the evaluation framework that was de-
fined in Section 3.3. The comment column explains the assigned rating.

Functional Req. Support Comment

Resolution-based
selection

Full Fully supported using media queries.

Viewport-based
selection

Full Fully supported using media queries.

DPR-based selection Full
Fully supported using the resolution media feature of media
queries.

Art Direction Full Fully supported using media queries.

Match media types
and features

Full Fully supported using media queries.

Image format-based
selection

Medium
The solution is not able to explicitly indicate the content
type of images, but the HTTP Accept header can be used
for content negotiation.

User agent-based
decisions

No
There is no standardized way to instructing the server to
deliver a certain versions (eg. small, to save bandwidth) of
images.

Table 15: Evaluation results of the functional requirements of Solution 4.

67 Responsive Images

Non-Func. Req. Rating Comment

Browser support High
All major browsers support CSS background images and
CSS media queries.

Performance Medium

The CSS code can be integrated directly within the HTML
document using the <style> tag. This is the fastest option,
as the CSS declarations are available immediately when the
HTML code has been received. For easier maintenance on
image-heavy websites, a separate CSS file is recommended.
However, this adds some delay for fetching the CSS file.
Mutually exclusive media queries should be used to prevent
the browser from downloading more than one image version.

Reliability Medium

CSS media queries are widely supported, but are
inconsistently implemented across browsers. The solution
mostly produces decent but not always ideal and correct
results.

Integrability Low

Writing mutually exclusive media queries is cumbersome
and results in bloated code. For websites with only a few
images this is not an issue, but for image-heavy websites
this makes the integration difficult and hard to maintain.

Flexibility Medium
Reacting to dynamic changes of the user environment by re-
issuing image requests is possible using CSS media queries.

Accessibility Low
This solution does not use the element. Thus, the alt
attribute to provide an alternative text is not available.

Table 16: Evaluation results of the non-functional requirements of Solution 4.

System Prereq. Needed Comment

JavaScript No –

Server-Side Logic No –

Cookies No –

Table 17: Evaluation results of the system prerequisites of Solution 4.

68 Responsive Images

3.4.6 Solution 5: JavaScript

The second evaluated client-sided approach is JavaScript. Its name is less meaning-
ful compared to the other solutions. This is because JS solutions can be very di-
verse and many implementations are possible. The general idea is to use JS to set
or change the src attribute of tags.

The use of JS goes along with advantages as well as disadvantages. A big ad-
vantage of JS solutions is that they are very flexible. JS can detect a wide range of
device characteristics which can be used for the image selection process. This in-
cludes screen size, viewport size, DPR, size of certain HTML elements on the page,
browser features and many more. There are also ways to measure the connection
speed of the client, although the test takes time to run and the results may not be
accurate [120].

Another advantage of JS solutions is their high browser support. As long as JS
is available and enabled in the client's browser, it can be supported. JS features are
not consistently supported by all browsers and the specific implementations vary.
However, usually it is possible to write functions which are compatible across all
browsers. A JS framework like jQuery might be a sensible option to help with that.
An issue are inconsistently implemented properties like screen.width. On most
desktop systems it returns the width of the screen in device pixels, but the width of
the ideal viewport on most mobile devices [49], [50].

Probably the biggest disadvantage of JS solutions is their poor performance.
The browser's lookahead parser can not be used to optimize the loading process. As
we learned in Section 2.2.5, JS gets executed immediately when it occurs in the
code. The browser's main parser halts until the JS code has executed. This halting
of the entire rendering process significantly increases the loading time. To prevent
the parser from halting, the <script> tag(s) should be put at the end of the docu-
ment. Another option is to add the async or defer attribute to the <script> tag to
delay the loading and execution of such. However, both results in the JS code only
being executed after the DOM has been fully created and is ready, which is indi-
cated by the DOMContentLoaded event. This behavior prevents the lookahead
parser from preloading any responsive images. [37]

Many JS implementations go along with a lack of semantics in the HTML code.
The reason was partly explained in the last paragraph. The src attribute is set us-
ing JS and usually only after the DOM has been fully created. This may result in
semantically incorrect documents when JS is not available. The possible options to
solve this issue are addressed in the Implementation Section.

The dependency on JS is a general downside of JS-based approaches. Users
without JS should be provided with a fallback so that they can see images as well.
Possible workarounds are covered in the following Implementation Section.

69 Responsive Images

Implementation

As mentioned earlier, a JS-based solution sets or changes the src attribute of
tags using JS. There are several ways to do that, some of which are shown in the
following listing.

An open issue of the above listings is how to supply the image URLs for the dif -
ferent image versions. A common solution is to use data attributes to provide
URLs or filenames. For example, attributes named data-1x and data-2x could be
provided to offer images for HiDPI screens. The following listing shows example
code which changes the src attribute of an image based on the DPR using jQuery.

The same approach can be applied for an image selection based on the viewport
width. The data attributes could be named data-400 and data-800 to provide 400
and 800 pixel wide image versions. Getting the correct viewport width in a cross-
browser compatible way is a difficult to impossible task. The best available prop-
erty is screen.width, but it is inconsistently implemented as we have seen in the
evaluation of Solution 2.

// set an attribute using plain JS
document.getElementById('an-image').setAttribute('src', 'http://example.com/image.jpg');

// using a more sophisticated selector engine with CSS selectors support
document.querySelector('#an-image').setAttribute('src', 'http://example.com/image.jpg');

// using jQuery to do the same
$('#an-image').attr('src', 'http://example.com/image.jpg');

Listing 23: Two JS-only and one jQuery method to set the src attribute of an image.

<script>
 // wait for the DOM to be ready (DOMContentLoaded event)
 $(document).ready(function() {
 // check if the device pixel ratio (DPR) is at least 1.5
 if (window.devicePixelRatio >= 1.5) {
 // select images with the data-2x attribute and change the src attribute to
 // the value of the data-2x attribute
 $('img[data-2x]).attr('src', $(this).attr('data-2x'));
 }
 });
</script>

Listing 24: Using data attributes to store different DPR-based image versions and apply them
using jQuery.

http://example.com/image.jpg
http://example.com/image.jpg
http://example.com/image.jpg

70 Responsive Images

The following shows a list of properties related to the viewport. All except the
DPR have an equivalent for the height.

1. screen.width: This property should return the screen resolution in CSS
pixels according to the specification [45, Sec. 5.3]. However, most desktop
browsers return the value in physical pixels. At the time of writing, the
desktop versions of Firefox and Internet Explorer adjust the value accord-
ing to the DPR when using the zoom function. On mobile, some devices re-
turn the screen resolution in device pixels, but most devices return the size
of the ideal viewport, which is considered the correct behavior in the com-
munity. [49], [50], [102]

2. window.innerWidth: On desktop systems, this property returns the
width of the viewport in CSS pixels. Firefox and Internet Explorer are
counting scrollbars to the viewport size. On mobile, it returns the width of
the visual viewport in CSS pixels. Thus, it is adjusted when using the
pinch zoom function. [102]

3. document.documentElement.clientWidth: On desktop, this property
returns the width of the viewport in CSS pixel, but without scrollbars. On
mobile, it returns the width of the layout viewport in CSS pixels. [102]

4. jQuery(window).width(): This value is retrieved using a jQuery func-
tion rather than a native JS DOM property. On desktop, it is the viewport
width in CSS pixels. On mobile, it is the layout viewport in CSS pixel.

5. window.devicePixelRatio: On desktop, this property returns the cur-
rent DPR, considering the zoom level. On mobile, it returns a fixed value
which indicates the DPR of the screen. [102]

The above list indicates that the support for properties is inconsistent and it is
hard to retrieve the intended value across all devices and device types. The
screen.width property usually provides a decent approximation of the value we are
interested in. When the viewport <meta> tag of Section 2.4 is used, the document.-
documentElement.clientWidth property can serve as an alternative to retrieve the
ideal viewport. However, a lot of testing is recommended to find the correct value
for given target devices.

71 Responsive Images

The following listing can be used to display the above properties for testing pur-
poses. The values are updated every 250ms in case they change, eg. when using the
zoom function.

Let us now cover the issue of how to initially deliver the tags in the
HTML document. There are several options, all of which have their pros and cons.
One option is to serve tags with the src attribute set to a default image. Do-
ing so, even users with no JS will see an image. It might not be the best image for
them, but at least there is an image. This option also allows the lookahead parser
to preload the default images, which is basically a good thing. However, the
preloading might introduce some overhead. When the page is loaded, first the
HTML code is parsed and at the same time the lookahead parser will request the
default image(s) that are set in the src attribute. Then the JS code runs to deter -
mine the best fitting image. If the image chosen by JS image is not the same as the
preloaded default image, the new image has to be requested. This results in some
overhead as the preloaded image is not being used and up to two image requests
are needed for every responsive image on the page.

This overhead can be avoided by omitting the default image in the src at-
tribute. However, serving an empty src attribute results in invalid HTML code.
This can cause problems and unexpected behavior in some browsers [121], [122].
Furthermore, valid code is important for search engines and accessibility. The code
can be made valid by using the data URI scheme, which was introduced in Section
2.5. It allows to provide a Base64 encoded image directly within the src attribute.
By providing a transparent 1×1 pixel GIF image, the code gets valid and there is
no overhead caused by additional image requests. The following listing shows such
an inline image [123]:

<script src="http://cdnjs.cloudflare.com/ajax/libs/jquery/2.1.3/jquery.min.js"></script>

<p>screen.width: </p>
<p>window.innerWidth : </p>
<p>document.documentElement.clientWidth (layout viewport): </p>
<p>window.devicePixelRatio: </p>
<p>$(window).width(): </p>

<script>
 setInterval(function(){
 $('span:eq(0)').html(screen.width);
 $('span:eq(1)').html(window.innerWidth);
 $('span:eq(2)').html(document.documentElement.clientWidth);
 $('span:eq(3)').html(window.devicePixelRatio);
 $('span:eq(4)').html($(window).width());
 }, 250);
</script>

Listing 25: Testing different JS properties related to the viewport and the device's screen.

Listing 26: HTML tag with an embedded transparent 1×1 pixel GIF image using data
URI scheme.

http://cdnjs.cloudflare.com/ajax/libs/jquery/2.1.3/jquery.min.js

72 Responsive Images

However, when using this option there is no default image anymore. This means
the lookahead parser can not retrieve the image, which might be the best image al-
ready. Furthermore, non-JS users will only see the 1×1 pixel GIF. That said, all
options are a compromise between user support and performance.

Now let us go back to solving the given use cases. As we have seen for the last
evaluated solution, CSS media queries offer a powerful way to select images. JS of-
fers its native matchMedia function to evaluate media queries. It allows to imple-
ment resolution- and viewport-based selection, art direction, and allows to match
media types and features. Event handlers can be bound to individual media
queries. JS does automatically fire the event when the evaluation of the media
query changes from true to false or reverse. The following listing shows an example
of the matchMedia function and media query event handlers. [74, p. 80]

Reacting to dynamic changes of the user environment can also be handled using
other JS events. For example, the resize event fires when the user resizes the
browser window. The following listing shows how to listen for events using JS. [74,
p. 80]

var mediaQuery = window.matchMedia("(orientation: landscape)");
if (mediaQuery.matches) {
 /* this code is executed if the above media query evaluates to true */
}

/* bind a function to the media query that is executed on every evaluation change */
mediaQuery.addListener(function(mQ) {
 if (mQ.matches) {
 console.log("viewport is now in landscape mode.");
 }
 else {
 console.log("viewport is now in portrait mode.");
 }
});

Listing 27: Evaluating media queries and binding a function to evaluation changes using JS.

// Listen for orientation changes
window.addEventListener("resize", function() {
 /* this code is executed every time the size of the viewport changes */
});

Listing 28: Binding a function to the resize event to react to changes of the viewport size.

73 Responsive Images

Evaluation

The evaluation was performed according to the evaluation framework that was de-
fined in Section 3.3. The comment column explains the assigned rating.

Functional Req. Support Comment

Resolution-based
selection

Wide
Supported using CSS media queries together with the JS
function matchMedia.

Viewport-based
selection

Wide
Supported using CSS media queries together with the JS
function matchMedia. The display width of images is known
as the JS code runs only when the page has been rendered.

DPR-based selection Wide

The window.devicePixelRatio property can be used to
implement a DPR-based selection. However, the property
behaves different on desktop and mobile browsers. While it
is fixed and device-specific on mobile, desktop systems
adjust it when using the zoom function.

Art Direction Wide
Supported using CSS media queries together with the JS
function matchMedia.

Match media types
and features

Medium
The JS function matchMedia can be used to evaluate a CSS
media query. No native selection by the browser is possible,
eg. when printing a document.

Image format-based
selection

Medium
JS can be used to determine support for image formats.
Additionally, the HTTP Accept header sent by the client
could provide information about supported image formats.

User agent-based
decisions

No
There is no standardized way of instructing the server to
deliver a certain version (eg. small, to save bandwidth) of
images.

Table 18: Evaluation results of the functional requirements of Solution 5.

74 Responsive Images

Non-Func. Req. Rating Comment

Browser support High
As long as the client-sided system prerequisites are met
(JS), browser support is very good.

Performance Low
Depending on the specific implementation, the browser's
lookahead parser can either not be used at all, or the risk of
requesting two images per displayed image is introduced.

Reliability Medium

The relevant JS properties and CSS media queries are not
consistently implemented across browsers. The solutions
mostly produces decent but not always ideal and correct
results.

Integrability Medium
The markup of existing pages has to be changed and the JS
code has to be integrated into the application.

Flexibility Medium

Reacting to dynamic changes of the user environment by re-
issuing image requests is possible using JS events, but
cumbersome to implement. The available device
characteristics are limited to what can be retrieved using JS.

Accessibility Medium

The tag and its alt attribute to provide an alternative
text can be used to correctly outline the content as an
image. However, depending on the specific implementation
the HTML document may not be valid and semantically
correct, eg. when using a 1×1 GIF placeholder image.

Table 19: Evaluation results of the non-functional requirements of Solution 5.

System Prereq. Needed Comment

JavaScript Yes
JS is needed to handle the entire process of making images
responsive.

Server-Side Logic No –

Cookies No –

Table 20: Evaluation results of the system prerequisites of Solution 5.

75 Responsive Images

3.4.7 Solution 6: Native HTML5

The last evaluated approach is the rather new native HTML5 responsive images so-
lution. It was developed by the RICG and was added to the WHATWG specs in
August 2014. As it runs natively within the browser and was developed exclusively
for providing responsive images, it outperforms most other available solutions. The
solution operates on the client-side. All information about the different available
image versions is outlined in the HTML code. The main components are the newly
added <picture> element and the attributes srcset and sizes. The browser is pro-
vided with a set of available image versions. Every image can be explicitly assigned
with its intrinsic width or the DPR it is optimized for, the image format, and the
approximate display width. The client has free choice which image it selects and
requests. This allows the browser to consider user preferences, eg. downloading
small images when having a slow Internet connection. Media queries be used to
force the use of a particular image to implement the art direction use case. That
said, the solution supports all functional requirements of the evaluation framework.
[84]

Besides, it offers several other advantages. Its performance is very good. The
URLs of all image versions are available directly within the HTML document on
the first page load. Thus, the browser's lookahead parser can preload the selected
images.

The solution does not need any of the evaluated system prerequisites and works
without JS, cookies, and server-sided logic.

The only drawback of this solution is browser support. At the time of writing,
Chrome, Firefox, and Opera fully support the specification. Safari only supports
the DPR-based selection use case using the srcset attribute with the pixel density
descriptor. Internet Explorer does not support any of the specs, but partial support
has been announced for Microsoft new browser Edge. [124], [125]

However, support for most unsupported browsers can be added with the pic-
turefill polyfill [123]. It adds support by emulating the native implementation using
JS. The dependency on JS results in only the image's alternative text from the alt
attribute being shown when the user has JS disabled. The polyfill introduces some
other minor drawbacks, which are covered in [123].

Implementation

The simplest way to deliver responsive images with this solution is to use the new
srcset and sizes attributes. These attributes can be added to the existing tag
to maintain backwards compatibility. The srcset attribute allows to provide a
comma-separated list of image URLs. Every URL is followed by a space character,
a number, and either a pixel density descriptor (x) or a width descriptor (w). The

76 Responsive Images

pixel density descriptor can be a floating point number and represents the DPR the
image is optimized for. The width descriptor indicates the intrinsic width of the
image. A simple example for the DPR-based selection use case will help under-
standing. [81]

The above listing provides the client with three image versions. The src at-
tribute contains the default image. It is displayed by legacy browsers without sup-
port for the srcset attribute. Supported browsers consider it for their selection and
implicitly assign it a DPR of 1. Two more images optimized for a DPR of 1.5 re-
spectively 2.0 are provided using the srcset attribute. Using pixel density descrip-
tors the client can only perform a DPR-based selection. If a resolution- or view-
port-based selection is needed, width descriptors have to be used instead.

When the srcset attribute contains at least one width descriptor, the sizes at-
tribute has to be set as well. The sizes attribute provides the browser with hints of
how big the image will be rendered. This information is necessary for the client to
select an image with a width descriptor close to the actual display width. Other-
wise, the client would have to assume that the image is displayed with the width of
the viewport, which is often wrong and results in the selection of a too large image.

The above listing provides the client with four different image versions. Again,
the image in the src attribute acts as a fallback for older browsers. The srcset at -
tribute provides four images with an intrinsic width of 200, 400, 800, and 1200
pixel. For the browser to select the best-fitting image, it has to know at which
width the image will be displayed. CSS declarations are not yet loaded at this early
stage of parsing and can not be used. The sizes attribute helps out and allows to
provide the needed information in a comma-separated list. The sizes attribute of
the above example contains two image sizes which are used when the attached me-
dia conditions evaluate to true. The last expression is used if no media condition
evaluates to true. In detail, the above sizes attribute is processed as follows: If the

<img src="default_image_500px.jpg"
 srcset="image_750px.jpg 1.5x, image_1000px.jpg 2x"
 alt="Image of a cat.">

Listing 29: Using the srcset attribute to provide different image versions based on the DPR.

<img sizes="(max-width: 30em) 100vw, (max-width: 50em) 50vw, calc(33vw – 60px)"
 srcset="image-200.jpg 200w,
 image-400.jpg 400w,
 image-800.jpg 800w,
 image-1200.jpg 1200w
 src="image-400.jpg"
 alt="Image of a cat.">

Listing 30: Implementing viewport-based selection using with srcset and sizes attributes.

77 Responsive Images

max-width: 30em media condition evaluates to true, an image width of 100vw is as-
sumed and the parsing of the sizing attribute has finished. The vw CSS unit stands
for viewport width and is a percentage unit relative to the viewport width. For ex-
ample, 50vw means 50% the width of the viewport. If the first media condition
evaluates to false, the next condition is checked and so on. If no condition evalu-
ates to true, the last item of the list is used, which can be a primitive CSS length
or a calc() expression [15, Sec. 8.1]. The above expression means the image is dis-
played with a width of “33vw minus 60px”. This example could be for an image
which is displayed with 33vw and has a padding of 15px assigned on each side. The
 tag in combination with the srcset and sizes attributes is sufficient for many
use cases. However, to implement art direction or new image formats, the <pic-
ture> element is needed. [81]

The <picture> element acts as a wrapper for one or more <source> tags. Each
<source> tag can have a srcset and sizes attribute, which behave the same as for
the tag. The difference of the <source> tag is that a media attribute can be
added to enable art direction. All <source> elements of a <picture> tag are pro-
cessed consecutively by evaluating the media attribute. The first matching
<source> element is selected and its srcset attribute is used to select a resource. [81]

The above listing utilizes the <picture> and <source> tag to implement art di-
rection. The large.jpg image is used if the viewport has a minimum width of 40em,
the medium.jpg image is used if the viewport has a minimum width of 30em and
the small.jpg image is used in all other cases and for older browsers without <pic-
ture> support.

The example can easily be enhanced to support viewport- or DPR-based selec-
tion as well. The srcset attribute of every <source> element behaves the same as
when used with the element. Multiple image versions can be provided using
width and pixel density descriptors. If width descriptors are used, the sizes at-
tribute has to be added. [81]

<picture>
 <source media="(min-width: 40em)" srcset="large.jpg">
 <source media="(min-width: 30em)" srcset="medium.jpg">

</picture>

Listing 31: Implementing art direction using the <picture> and <source> tags.

<picture>
 <source media="(min-width: 40em)" srcset="large-2x.jpg 2x, large-1x.jpg">
 <source media="(min-width: 30em)" srcset="medium-2x.jpg 2x, medium.jpg">

</picture>

Listing 32: Combining art direction and DPR-based selection using the <picture> and <source>
tags.

78 Responsive Images

The type attribute can be added to <source> elements to explicitly specify the
image format in form of an Internet media type, formerly known as Multipurpose
Internet Mail Extensions (MIME) type. This allows to provide images in several
image formats and let the user agent choose the one it supports or prefers. [84]

An in-depth coverage of the native responsive images solution can be found at
[11, Sec. 4.8], [81], [84].

Evaluation

The evaluation was performed according to the evaluation framework that was de-
fined in Section 3.3. The comment column explains the assigned rating.

Functional Req. Support Comment

Resolution-based
selection

Full
Fully supported using the or <source> tag and their
srcset and sizes attributes.

Viewport-based
selection

Full
Fully supported using the or <source> tag and their
srcset and sizes attributes.

DPR-based selection Full
Fully supported using the or <source> tag and their
srcset attribute with the pixel density descriptor.

Art Direction Full
Fully supported using <source> elements with the media
attribute. The elements must be wrapped by the <picture>
element.

Match media types
and features

Full
Fully supported using <source> elements with the media
attribute. The elements must be wrapped by the <picture>
element.

Image format-based
selection

Full
Fully supported using <source> elements with the type
attribute to provide the image type. The elements must be
wrapped by the <picture> element.

User agent-based
decisions

Full

The user agent is provided with a list of all image versions
and can select one based on its preferences. However, at the
moment no major browser considers user-based settings for
the image selection process.

Table 21: Evaluation results of the functional requirements of Solution 6.

<picture>
 <source type="image/webp" srcset="image.webp"> <!-- image in WebP format -->
 <source type="image/vnd.ms-photo" srcset="image.jpxr"> <!-- image in JPEG XR format -->
 <!-- image in JPG f. (fallback) -->
</picture>

Listing 33: Implementing a selection based on image formats using the <picture> and <source>
tags.

79 Responsive Images

Non-Func. Req. Rating Comment

Browser support Medium

At the time of evaluation, only supported in Firefox,
Chrome, Opera, and the mobile versions of these browsers.
Not supported by Internet Explorer, partly supported by
Safari. The picturefill polyfill can be used to add (full)
support for these browsers.

Performance High

All image versions are available to the client directly within
the HTML code. The browser's lookahead parser can be
used to preload images. All responses are cacheable by
proxy servers and CDNs.

Reliability High
If the browser supports the solution, accurate and consistent
results can be expected due to standardized
implementations.

Integrability Medium
The markup of existing pages has to be changed and
different image versions have to be generated.

Flexibility High
Re-requesting an image when the user environment changes
is up to the user agent, but can be forced using art
direction.

Accessibility High
The tag and its alt attribute for an alternative text
can be used to correctly outline the content as an image.

Table 22: Evaluation results of the non-functional requirements of Solution 6.

System Prereq. Needed Comment

JavaScript No
JS is not required for supported browsers, but it is required
when using the picturefill polyfill to support browsers
without native support for the solution.

Server-Side Logic No –

Cookies No –

Table 23: Evaluation results of the system prerequisites of Solution 6.

80 Responsive Images

3.5 Evaluation Results

3.5.1 Overview

Functional Requirements
Results for Solutions1

1 2 3 4 5 6

Resolution-based selection Poor Wide Wide Full Wide Full

Viewport-based selection No No Medium Full Wide Full

DPR-based selection Poor Medium Wide Full Wide Full

Art Direction Poor Medium Medium Full Wide Full

Match media types / features No Medium No Full Medium Full

Image format-based selection Medium Medium Medium Medium Medium Full

User agent-based decisions No No Medium No No Full

Table 24: Overall evaluation results of the functional requirements.

Non-Functional
Requirements

Results for Solutions

1 2 3 4 5 6

Browser support High High Low High High Medium

Performance Medium Medium High Medium Low High

Reliability Low Medium High Medium Medium High

Integrability High High High Low Medium Medium

Flexibility Low Low Medium Medium Medium High

Accessibility High High High Low Medium High

Table 25: Overall evaluation results of the non-functional requirements.

System Prerequisites
Results for Solutions

1 2 3 4 5 6

JavaScript No Yes No No Yes No

Server-Side Logic Yes Yes Yes No No No

Cookies No Yes No No No No

Table 26: Overall evaluation results of the system prerequisites.

1 Solution 1: User Agent Detection
Solution 2: Cookies
Solution 3: HTTP Client Hints
Solution 4: CSS Background Images
Solution 5: JavaScript
Solution 6: Native HTML5

81 Responsive Images

3.5.2 Discussion

The results of the evaluation are quite clear. The native HTML5 solution fulfills all
functional requirements and its non-functional requirements result is good as well.
However, the best solution may vary for each project and its use cases. The pur-
pose of this work's evaluation was not to find the best solution, but to provide a
guideline and data to support decision making. Below, every solution will be briefly
discussed and recommendations are given. Before this is done, a more general dis-
cussion about the evaluation follows.

As it was mentioned in Section 3.3, the evaluation was subject to various biases.
First and foremost, the evaluation was performed by only one person, the author of
this work. A web development background for more than ten years helped with the
evaluation, but of course yields to personal experiences and preferences having an
influence on the result. It was tried to apply a great sense of objectivity and mini-
mize the influence by developing a formal evaluation framework. However, a per-
sonal bias was inevitably present.

The evaluation framework itself is subject to the same issues as stated above. It
was created by only one person, the author of this work. Different requirements
and evaluation proceedings might have been chosen by another person. An im-
provement for future work would be to strictly define how to evaluate each individ-
ual requirement and when to assign which rating option. Additionally, more grad-
ual rating options for the non-functional requirements are suggested to enhance the
current evaluation. However, to minimize the rating bias, more rating options
would even more require that every individual rating option is strictly defined.

Some other issues arose when performing the evaluation process itself. An issue
was that dimension of the implementation are not well-defined for the evaluated
solutions. A very basic implementation of a presented concept is obviously less
powerful than a more comprehensive one. Solving this issue artificially by limiting
the implementation details of every evaluated solution was not found to be a rea-
sonable solution. Instead, it was tried to evaluate all requirements based on the in-
trinsic limitations of the particular solution. These are limitations that can not be
overcome by the developer or only with a disproportionate amount of time or by
greatly increasing the complexity. Many possible implementations and their limita-
tions were considered to find a reasonable frame for all solutions. This procedure
was of course subject to a personal bias again. Nevertheless, it was found to be the
best option considering the available time and the scope of this work.

A similar issue was the possibility to combine solutions to extend their capabili-
ties. This is commonly done, especially combining server- and client-side solutions
to get the best of both worlds. For the evaluation, it was assumed that only the
evaluated solution was used. Sensible combinations are outlined in the comments of
the evaluation tables and the following discussion of the individual solutions.

82 Responsive Images

Let us now discuss the evaluation results. First, the general differences between
server- and client-sided evaluation results are outlined. Server-sided approaches
have in common that they are easy to integrate into existing applications or web-
sites. They also provide good support for accessibility features. Their support for
the functional requirements greatly varies between the solutions. Thus, the detailed
results have to be considered.

Client-sided approaches have less similarities. Overall, their support of the func-
tional requirements is better than of server-sided approaches. This is due to the
fact that accessing device characteristics is easier when code runs directly on the
client. However, all client-sided solutions have other flaws which have to be consid-
ered. The following briefly discusses each solution and gives recommendations.

Solution 1, User Agent Detection, is not recommended to be used as a sole solu-
tion for responsive images. The produced results are unreliable on mobile devices,
and desktop systems can not be handled accurately at all. It is sufficient to detect
if the user is on a mobile device. As desktop and mobile devices nowadays can have
similar screen resolutions, knowing only the device category is not sufficient. That
said, user agent detection should be used with caution. No system prerequisites
make it a suitable for providing fallbacks or enhance other solutions.

Solution 2, Cookies, offer a decent server-sided solution until HTTP Client
Hints are widely supported. Cookie-based solutions can easily be integrated into ex-
isting applications. The produced results are decent to good, depending on the im-
plementation and the user's device and browser. Matthew Wilcox's Adaptive Im-
ages is a recommended implementation. It supports the resolution- and DPR-based
selection use cases. Adding support for other use cases is possible, but cumbersome
to implement and not recommended unless absolutely necessary.

Solution 3, HTTP Client Hints, is a very sophisticated approach. Due to its
standardization it is future-proof and will work consistently across browsers once
supported. The current lack of browser support is the biggest drawback of this so-
lution. At the moment, no major browser implements HTTP Client Hints. Further-
more, the specification is still subject to changes until it is out of draft status. It is
strongly recommended to wait for widespread browser support before using HTTP
Client Hints as a sole solution. Until then, it can optionally be implemented as a
second solution to immediately support the first browsers with client hints support.

Solution 4, CSS Background Images, uses an entirely different approach to dis-
play images. This goes along with several advantages and disadvantages. The solu-
tion supports most functional requirements very well and has great browser sup-
port. Due to its cumbersome implementation is is not recommended for image-
heavy websites. Mutually exclusive media queries are needed for performance rea-
sons. If the accessibility of images is important, a solution which uses the tag
to display images should be preferred. Other than that, it is a recommended solu-
tion for websites with few images.

83 Responsive Images

Solution 5, JavaScript, is very flexible in terms of extensibility. Some features
might be cumbersome to implement, but JS allows very powerful solutions. A
downside is the rather poor performance as the browser's lookahead parser can not
be used for most implementations. When using a smartphone with a slow network
connection, the advantage of serving optimized images might outperform the ab-
sence of the lookahead parser. That said, JS solutions do have some drawbacks,
but are sensible option anyway when very customized implementations are needed.

Solution 6, Native HTML5, can be considered the flagship solution of all respon-
sive images approaches. It is a standardized and future-proof approach, which fully
supports all evaluated use cases. Its main drawback was the lack of browser sup-
port for a long time. However, at the time of writing all browsers except Internet
Explorer support at least parts of the specification. Using the picturefill polyfill, it
is possible to enable full support for most browsers. Drawbacks when using the
polyfill are that the lookahead parser can not be used and JS is required. If this is
not an issue, the native HTML5 is strongly recommended. It is expected to be the
main responsive images solution when widespread browser support is available.

All evaluated solutions have in common that they are somehow affected by
lacking browser support or inconsistent implementations of features. As it has been
outlined in Section 2.1, enhancing the web with its many stakeholders, users and
devices is a hard task. A big issue is that all browser vendors decide for themselves
if and when a feature is implemented. Furthermore, some vendors do not strictly
follow specs of the W3C and the WHATWG. The results are many incompatibili-
ties and inconsistent behavior. In order to encounter this issue, it is strongly recom-
mended to do a lot of testing. This includes testing browsers as well as devices.
Testing desktop browsers can easily be done by installing the latest version of all
major browsers. Most of them provide developer tools, which allow to inspect the
HTML, DOM, and network traffic. There are several methods for testing on mobile
devices. The developer tools of some desktop browsers allow to emulate devices by
changing the viewport resolution, its DPR, and even limit the network speed to
simulate a mobile connection. A better but less convenient alternative is to use real
devices for testing. If this is not an option, services like BrowserStack are a good
alternative [126]. BrowserStack deploys hundreds of operating system and browser
combinations which can be accessed remotely for testing purposes. [74, p. 85]

The following discusses alternatives to the evaluated solutions. First, the not se-
lected CSS image-set method and the CSS content property approach are covered.
The image-set() CSS function is well-supported but currently only supports one use
case – serving CSS background images in multiple, DPR-optimized variants. The
CSS content property is not recommended as it is a rather hacky approach and in-
evitably introduces the risk of loading two images per responsive image [93].

Another alternative is to deploy a separate mobile website, also called m-dot
site. User agent detection can be used to redirect new visitors to the mobile version

84 Responsive Images

if they are using a mobile device. An advantage of this approach is that not only
the appearance but also the code can be optimized for the target devices. In con-
trast to RWD that uses the same HTML document for all devices, not needed
stylesheets or JS libraries can easily be omitted to reduce the total size of the page.
An issue with separate mobile websites is the great device fragmentation. New de-
vices and device types are being introduced frequently. Creating a separate website
for every emerging device category is not sustainable, expensive, and extremely dif-
ficult to maintain. That said, there are use cases for separate mobile websites, but
a responsive design is recommended in most cases. [1, p. 8], [35, p. 9], [127]

A fundamentally different alternative is to create a native smartphone app. Its
advantages are that very customized and powerful solutions are possible. More in-
formation about the user and the environment are available through sensors and
operating system APIs. On the other hand, native apps have several downsides as
well. First and foremost, an app has to be installed by the user before it can be
used. Users probably prefer a website to spontaneously look up some information.
Secondly, the code of native apps is dependent on the operating system and might
have to be implemented again to support additional systems. These two issues can
be overcome by creating apps using HTML, CSS, and JS. This method is becoming
increasingly popular and companies like Spotify and Netflix deploy this approach.
It uses an app-embedded browser to display the a website, which is implemented
with a look and feel similar to a truly native smartphone app. [127]

The following discusses the future prospects of responsive images. Already in
2011, Bruce Lawson and Anne van Kesteren reasoned about the actual need for re-
sponsive images. “There’s a school of thought that says everything will be 300ppi
and networks will be fast enough, so this is really an intermediate problem until ev-
eryone starts using high-res graphics and all displays go from
150 to 300 [Note: PPI]. […]” [128]. They might be right that the Resolution-based
selection use case is less of an issue in the long run. Many devices are shipped with
HiDPI screens and mobile Internet connections are getting faster and more reliable.
However, this change will take years, and even longer in less developed countries.
Additionally there are several other responsive images use cases that would still be
valid, eg. art direction. That said, the demand for responsive images is certainly
present, but some use cases might slowly fade away in the long term.

Another topic of future developments are new image formats. A responsive im-
age image format stores several image versions in a single file. The browser can
load as much of the file as needed – more data results in a better image quality.
However, this is only a long term solution. Yoav Weiss states that “a new format
will take too long to implement and deploy, and will have no fallback for older
browsers.” [129]

85 Proof of Concept: Travel Website using Responsive Fullscreen Images

4 Proof of Concept: Travel Website using
Responsive Fullscreen Images

This section describes the implementation of a website with responsive fullscreen
images. First, the idea and concept is outlined and the scope is set in Section 4.1.
The motivation for using fullscreen images and their implementation is covered in
Section 4.2. Following next, Section 4.3 describes the prototypical implementation
of the web application. The purpose of this section is to demonstrate the implemen-
tation of a real-world example. The implementation and its findings are discussed
in Section 4.4.

4.1 Introduction

The concept of the following web application was the initial stimulus for choosing
the topic of this work. The idea is to create a website that helps the users to choose
their next travel destination. This is done by displaying fullscreen images of possi-
ble destinations. The overall user interface is planned to be very simple and mini-
mal. The focus is put on high quality images of beautiful locations. Only some con-
cise facts about the destination are shown in a small box. The next destination can
be requested by clicking or tapping on the current image. Displaying the images in
fullscreen mode makes them more expressive [130, p. 156]. The intention is to
arouse the user's wanderlust and provoke impulsive buying behavior for flight tick-
ets. The final application is planned to display real-time flight fares from an airport
near the user to the shown destination. For the booking process the user should be
redirected to the website of the responsible travel agency or airline. This setup
keeps the administration effort and complexity of the application to a minimum.
However, it is out of the scope of this work to implement the entire application.
Thus, Section 4.3 only covers the implementation of a prototype. The focus is put
on responsive images together with fullscreen images.

4.2 Fullscreen Images

Firstly, let us set the scope of fullscreen images. There are several types of
fullscreen. When referring to fullscreen images in a web-context, it usually means
images which cover the entire viewport. The browser window might not be maxi-
mized and user interface elements like the address bar are still visible. That said,
the word screen in fullscreen can be misleading, as the image does not necessarily
cover the entire screen.

86 Proof of Concept: Travel Website using Responsive Fullscreen Images

Another type of fullscreen is the browser's native fullscreen mode. Most
browsers have this feature, which hides the user interface of the browser and ex-
pands the viewport to the size of the entire screen. This fullscreen mode can not
only be enabled using the browser's user interface, but also using the JS Fullscreen
API. The prototype of this section mainly focuses on fullscreen images in terms of
the viewport, but also uses the Fullscreen API to let the user activate the
fullscreen mode of the browser.

4.2.1 Motivation

The motivation for using fullscreen images are diverse. The bigger images are dis-
played, the more attention they gain. Very expressive websites are can be created
using fullscreen images. This expressiveness is an easy method to arouse emotions
in the user. The emotional component of design is very important for the user ex-
perience. The user's perception of a brand or website can greatly be influenced by
linking it with positive emotions. Fullscreen images are not the only or best, but an
easy way to arouse emotions. Less textual content is needed and the image can
speak for itself. It might be easier to buy some beautiful and aesthetic photographs
than to develop a content strategy and produce loads of content. [3, p. 8], [130, p.
156]

The motivation for using a fullscreen images application in this work is rather
technical. Fullscreen images cover the entire viewport and almost the entire screen
when the browser is maximized. If all common screens should be supported, images
with resolutions of up to 3840×2160 pixels (Ultra HD) and even higher have to be
served. Images at such resolutions easily have a filesize of 3 megabytes and more.
As we learned earlier, a lot of data is wasted when high-resolution images are deliv-
ered to low(er)-resolution devices. This overhead is most evident for fullscreen im-
ages and thus, they greatly demonstrate the need for responsive images.

Beside the above responsive images issue, other issues arise when working with
fullscreen images. Some of them are outlined in the following section and can
partly be solved using the responsive images use cases.

4.2.2 Issues

The main issue with fullscreen images is that they have to fill the entire viewport.
The earlier presented fluid images technique causes images to be displayed with the
width of their parent element. This technique does only consider the width and not
the height. Thus, it is only applicable for fullscreen images if the image and the
screen have the same aspect ratio. Otherwise the image does not cover the entire
parent element. The following example will help understanding. An image with an
intrinsic aspect ratio of 4:3 (landscape) is displayed on a 9:16 (portrait) smartphone

87 Proof of Concept: Travel Website using Responsive Fullscreen Images

screen. The fluid images technique can be used to display the image with the width
of the viewport, but because of the different aspect ratios there will be a large gap
at the bottom of the viewport. The left smartphone in the below figure illustrates
the issue. [131]

There are two methods to approach this issue. One is to ignore the image's as-
pect ratio and squeeze or stretch the image to fill the viewport. The result is that
the image looks distorted, which is not what we want. The better option is to up-
scale the image until it cover the entire viewport while preserving the image's as-
pect ratio. This approach solves the issue of correctly displaying the image as
fullscreen image, but introduces another issue. The upscaling causes parts of the
image to grow outside of the viewport. These parts are being cropped and are not
visible anymore. The issue is that important objects of the image could be cropped,
which causes the image to lose its informative value. This is most evident for im-
ages with important objects near the edges. The issue can be encountered by repo-
sitioning the image so that the important objects are within the viewport. This
does not reduce the size of the cropped area, but ensures that the invisible area
does not contain essential information. Both presented issues can be encountered
with the techniques presented in the next section. [131]

4.2.3 Approaches

There are several common approaches to implement fullscreen images. Technically,
the goal is to display an image covering its entire parent element. For fullscreen
images, this parent element happens to have the size of the viewport, but the goal
remains the same. The following briefly covers three common approaches to imple-
ment fullscreen images.

Figure 3: Fluid image technique (left), scaling while ignoring the aspect ratio (middle), and
correct scaling while preserving the aspect ratio, but with cropped areas.

88 Proof of Concept: Travel Website using Responsive Fullscreen Images

CSS Background Images

CSS background images can easily be configured to cover the entire target element
using the background-size: cover; declaration. This technique preserves the aspect
ratio of the image. The next step is to display the element with the size of the
viewport. This can be done by setting its width and height to 100%. Before this
works, the width and height of the <html> and <body> element have to be set to
100% as well. The following listing shows how to implement a fullscreen image us-
ing a CSS background image. [132]

The background-size property can only be applied to CSS background images.
Images that are displayed using the tag are not supported. In consequence,
this approach can not be combined with responsive images solutions that require
the tag, eg. the native HTML5 solution. However, a similar -compatible
property is introduced in the lastly covered approach.

The cropping of important objects issue can be encountered using the back-
ground-position property. It allows to adjust the positioning of the image within
the element. The default value is 0% 0%, which matches the top left corner of the
target element with the top left corner of the image. The declaration background-
position: 50% 50%; can be used to horizontally and vertically center the image
within the element. [14, p. 245]

This approach offers very good browser support. It can very well be combined
with the CSS Background Images responsive images solution. The same limitations
as stated in the evaluation apply.

<div id="an-image"></div>

<style>
 html, body {
 width: 100%;
 height: 100%;
 margin: 0;
 }

 #an-image {
 position: absolute;
 left: 0;
 top: 0;
 width: 100%;
 height: 100%;
 background-image: url(http://placehold.it/1680x1050); /* placehold.it automatically
 generates placeholder images
 with the given resolution. */
 background-size: cover;
 background-position: center center;
}
</style>

Listing 34: Implementing a fullscreen background image using CSS background images.

http://placehold.it/1680x1050

89 Proof of Concept: Travel Website using Responsive Fullscreen Images

JS-based Approach

There are several methods to implement fullscreen images using JS. Some JS
fullscreen image scripts utilize the before covered CSS Background Images ap-
proach. This is done by dynamically creating a new element and setting the back-
ground-image property to the image URL. The URL(s) can be passed to the script
by a parameter or get fetched from attributes of a HTML tag. The implementation
and result of the fullscreen image is the same as for the just covered CSS Back-
ground Images approach.

Another JS-based option is to implement fullscreen images using the tag.
This requires to emulate the native functionality of the background-size: cover;
declaration using JS. The task is to manually set the width and height of the image
to values which are sufficient to cover the entire the viewport. The aspect ratio of
the image has to be preserved when calculating the new dimensions. The image can
then be positioned absolutely to adjust which parts of the image are cropped and
invisible. The following listing shows how to manually set the required CSS decla-
rations. Please note that it is a static example just to demonstrate the calculation.
The JS code of Section 4.3.5 shows how to automate the calculation and setting of
the values. The values have to be recalculated every time the size of the viewport
changes.

The cropping issue can be handled using the top, right, bottom and left CSS
properties to position the image so that no important areas of the image are
cropped. The jQuery plugin FocusPoint implements this functionality [133].

<style>
 html, body {
 width: 100%;
 height: 100%;
 margin: 0;
 overflow: hidden; /* do not show the parts of the img which overlap the body element */
 }

 /* let us assume a 1024×768 image (4:3 aspect ratio) on a 1280×800 viewport (16:10) */
 img {
 position: absolute;
 width: 1280px; /* the width should cover the entire viewport */
 height: 960px; /* the height is calculated using to the aspect ratio (1280 / 4 × 3) */
 left: 0; /* the width matches the viewport exactly – no offset needed */
 top: -80px; /* the image height (960) is higher than the viewport (800), an offset of
 -80px ((960-800) / 2) results in the image being vertically centered */
 }
</style>

Listing 35: Implementing a fullscreen image using the tag and manual positioning using
CSS.

90 Proof of Concept: Travel Website using Responsive Fullscreen Images

JS-based fullscreen images approaches have the same characteristics as respon-
sive images JS approaches. They allow very flexible implementations and browser
support is high. Some fullscreen image scripts use the CSS background image ap-
proach and fallback to the element if the browser does not support the back-
ground-size property. A drawback is the dependency on JS. The positioning and re-
sizing of images can be cumbersome to implement and might be slower than native
browser functions. There are several ready-to-use scripts available that implement
JS-based background images [134]–[137].

CSS object-fit Property

The object-fit CSS property is the -compatible equivalent of the background-
size property. The value cover ensures that the image always covers the entire size
of the element while preserving the image's aspect ratio. This approach
makes the need to manually resize and position the image obsolete. Its compatibil -
ity with the tag allows to use it with the native HTML5 responsive images
solution, which results in a very powerful combination. [94, Sec. 4], [131]

The cropping issue can be handled the same way as with CSS background im-
ages. The equivalent property is called object-position and can take the same argu-
ments as background-position. However, object-position uses a default value of 50%
50% (center), while background-position has a default value of 0% 0% (top left).

The object-fit fullscreen approach is very powerful as it can be used with the
 element. Thus, it can be combined with all responsive images solutions ex-
cept the CSS Background Image responsive images solution. The object-fit ap-
proach together with the native HTML5 responsive images solution was selected
for the implementation of the prototype.

<style>
 html, body {
 width: 100%;
 height: 100%;
 margin: 0;
 }

 img {
 position: absolute;
 left: 0;
 top: 0;
 width: 100%;
 height: 100%;
 object-fit: cover;
 }
</style>

Listing 36: Implementing a fullscreen image using the tag and the object-fit CSS property.

91 Proof of Concept: Travel Website using Responsive Fullscreen Images

A drawback of the object-fit approach is its rather poor support by older
browsers [138]. No version of Microsoft's Internet Explorer does not support the
object-fit property.

4.3 Implementation of a Prototype

It is out of the scope for this work to implement and document the entire applica-
tion as described in Section 4.1. Thus, it was decided to implement only a proto-
type to demonstrate the concept. The focus is put on responsive images, and their
combination with fullscreen images. The purpose is to demonstrate the implemen-
tation of responsive images using a real-world example. The rapid prototyping
strategy is used to obtain results quickly. The strategy's aim is to deliver a working
application as soon as possible. This is done using very new techniques which allow
an easy implementation. Some of these techniques are not yet supported in all ma-
jor browsers. In this case, suggestions for workarounds are given. However, due to
applied rapid prototyping strategy, the code is not intended for use on a produc-
tion site. More work will be needed to add support for all browsers and devices.

4.3.1 Overview

The following gives an overview of the implementation. It was tried to keep the ap-
plication's architecture as simple as possible. HTML, CSS, and JS were used on the
client-side, and PHP for the server-sided logic. The application consists of only one
HTML document, which is dynamically changed using JS. This HTML document
contains the homepage, which is delivered to the user on the first visit. The home-
page already contains a fullscreen image together with the text “We will help you
finding your next travel destination.”, which should arouse the user's wanderlust.

Figure 4: Screenshot of the homepage of the prototype.

92 Proof of Concept: Travel Website using Responsive Fullscreen Images

After a click on the “Begin” button the actual presentation of destinations
starts. The destinations are loaded dynamically using AJAX. A server-sided PHP
script randomly selects one destination from an associated array. The destination is
returned to the client as a JSON-encoded object. The client-sided JS code initiates
the image preloading. Once the image has been loaded, it is displayed and the loca-
tion information are updated. The location information is shown in a semi-trans-
parent box, which changes its size according to the size of the viewport. The im-
ages are implemented using the native HTML5 responsive images solution. The ob-
ject-fit CSS property is used to display the images in fullscreen mode. A JS-based
fullscreen approach is used as a fallback if the object-fit property is not supported.

The prototype of this work is shipped with 22 sample destinations and 7 home-
page images. The images were downloaded from free stock images websites [139],
[140]. Six individual data fields were chosen to be displayed in the information box.
The distance to the destination, the local time at the destination, the recommended
months for a trip, the needed budget, the average temperatures of the current
month, and most importantly, the current flight fares. As this prototype's purpose
is just to demonstrate the concept, the displayed data might not be correct. Ran-
dom values are use for some fields like the average temperature or the flight fares.

It is out of the scope for this work to document every detail of the prototype.
The following describes some relevant aspects of the implementation. Please note
that some less relevant parts of the code listings have been omitted for didactic
reasons.

Figure 5: Screenshot of the main view of the prototype on a desktop monitor.

93 Proof of Concept: Travel Website using Responsive Fullscreen Images

4.3.2 File Structure

Knowing the file structure of the application is helpful to get an overview of the ar -
chitecture. The following table briefly describes the relevant files and directories.

File or Directory Sources Description

css/style.css –
The CSS Stylesheet which contains all custom styling
and media queries to adapt the design to small devices.

img/

[139]–[141]

This directory holds UI graphics (logo and icons), and
the destinations/ and homepage/ directories.

img/destinations
This directory contains high-resolution images of the
destinations. The actually served downscaled versions
are located in the scaled/ subdirectory.

img/homepage
This directory contains high-resolution images for the
homepage (first page). The actually served downscaled
versions are located in the scaled/ subdirectory.

js/common.js – The main JS file which contains the client-sided logic.

js/picturefill.js [123]
Polyfill for the native HTML5 responsive images
solution.

js/modernizr.custom.js [142]
Modernizr is a script to perform feature detections. It
is used to detect object-fit, srcset attribute, and
fullscreen API support.

js/hammer.js [143]
Hammer.JS is a library to implement touch gestures. It
is used to allow the user to request the next destination
by swiping to the left on touch devices.

js/jquery.min.js [144]
Google's jQuery library, used for selecting elements,
DOM manipulations, and AJAX requests.

destination_data.php –
This PHP file holds the destination data (title,
location, image filename etc.) in an associative array.

get_image.php –
This PHP script is called using AJAX. It randomly
selects a destination from the above file, formats the
data, and returns it to the client as a JSON object.

index.php –
This PHP file mainly contains the HTML structure of
the website. It also includes a short piece of PHP code
to randomly select an image for the homepage.

Table 27: File structure of the prototype.

The three main files of the applications are the index.php HTML document, the
style.css stylesheet, and the common.js JS file. The following listing shows the basic
structure of the index.php file. The inner content of the main div containers has
been omitted due to a lack of space.

94 Proof of Concept: Travel Website using Responsive Fullscreen Images

The following listing shows the structure of the destination_data.php file, which
stores the destination data in an associative array.

The common.js file is less straightforward to explain and is covered in small
parts over the next sections.

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <title>destinat.io</title>
 <link href="css/style.css" rel="stylesheet">
 <!-- some meta tags and external fonts have been ommited in this listing. -->
 </head>
 <body>
 <div class="welcome">
 <!-- "We will help you finding your next travel destination" message and button. -->
 </div>
 <header class="main">
 <!-- top bar with the logo, title etc.
 </header>
 <div class="fullscreen-images">
 <!-- container for the fullscreen images -->
 </div>
 <div class="information-box">
 <!-- container of the information about the destination. -->
 </div>
 <div class="loading">
 <!-- a semi-transparent fullscreen overlay which serves as a loading indicator -->
 </div>
 <script src="js/jquery.min.js"></script>
 <script src="js/picturefill.js"></script>
 <script src="js/modernizr.custom.js"></script>
 <script src="js/hammer.js"></script>
 <script src="js/common.js"></script>
 </body>
</html>

Listing 37: The basic HTML structure of the prototype. (index.php)

<?php
$destinations = array();
$destinations[] = array(
 'title' => 'Siena', // title of the destination
 'location' => 'Tuscany, Italy', // location of the destination
 'distance' => '670', // distance, hardcoded from Vienna for the prototype
 'timezone' => 0, // timezone as offset from Europe/Vienna timezone
 'recommended_months' => 'Jun-Sep', // recommended travel months for the destination
 'average_temperature' => mt_rand(25,38), // randomly set the average monthly temperature
 'flight_fare' => mt_rand(150, 300), // randomly set the flight fare
 'image_file' => '7', // the number of the destination's image file
 'position_x' => 85, // the horizontal focus point of the image
 'position_y' => 50 // the vertical focus point of the image
);
// more destinations follow here

Listing 38: The associative array which holds the destination data. (destination_data.php)

95 Proof of Concept: Travel Website using Responsive Fullscreen Images

4.3.3 Responsive Fullscreen Images

This section covers the implementation of responsive images and their combination
with fullscreen images. The images of the destinations are implemented using the
native HTML5 responsive images solution. The srcset attribute is used to imple-
ment a resolution-based selection. The provided widths are 360, 720, 960, 1280,
1650, and 1920 pixels. Higher resolutions are recommended but the used source im-
ages were only available with up to 1920 pixels in width. The following listing
shows how the images are implemented in the HTML code.

No src attribute is provided for the tag. However, this does not cause un-
expected behavior as stated in Section 3.4.6. Browsers that support the native
HTML5 solution do not need a src attribute. For unsupported browers, the pic-
turefill polyfill ensures that the src attribute is set before the element is added to
the DOM. The sizes attribute is set to 100vw (viewport width) as the images are
meant to be display in fullscreen mode and thus, with 100% width of the viewport.
The data-position-x and data-position-y attributes contain the focus point of the
image to correctly position the image on the viewport. These two attributes are
used by the fallback in Section 4.3.5. The srcset attribute contains six image re-
sources with a width descriptor for the provided widths.

Now that we have implemented the responsive images, we will next cover how
to display them in fullscreen mode. The CSS object-fit property approach was se-
lected to display the images in fullscreen mode. The following CSS rule is applied
to all fullscreen images on the page.

<img class = "fullscreen-image current"
 sizes = "100vw"
 data-position-x = "0.2"
 data-position-y = "0.5"
 srcset = "img/destinations/scaled/1-360.jpg 360w,
 img/destinations/scaled/1-720.jpg 720w,
 img/destinations/scaled/1-960.jpg 960w,
 img/destinations/scaled/1-1280.jpg 1280w,
 img/destinations/scaled/1-1680.jpg 1680w,
 img/destinations/scaled/1-1920.jpg 1920w">

Listing 39: Prototype's implementation of responsive images using the srcset attribute.

.fullscreen-image {
 position: absolute;
 top: 0;
 left: 0;
 width: 100%;
 height: 100%;
 object-fit: cover;
 z-index: 100;
}

Listing 40: Prototype's implementation of fullscreen images using the object-fit property.

96 Proof of Concept: Travel Website using Responsive Fullscreen Images

Section 4.2.2 introduced the issue of losing important parts of the image when it
is cropped to fit the viewport. This issue can be encountered by controlling the
cropping process. The object-position property can be used to specify how the im-
age should be positioned. The default value is 50% 50%, which horizontally and ver-
tically centers the image. However, if the main object of the image is not within
the center region, the value can be adjusted. For example, if the main object is on
the top right corner, the value to apply is 100% 0%. For the prototype, the focus
point of each image can be set in the associative array of destination_data.php us-
ing the indices position_x and position_y. The following listing shows how the ob-
ject-position property is set using JS. This is done just before the next image is dis-
played.

The below figure shows how object-position controls the positioning and thus,
the cropping process. The image of the Italian destination Siena shows a tower on
the right side of the image. The object-position property is set to 85% 50% to ensure
that this tower is always within the viewport regardless of the device's width.

// check if both focus points have been set
if (data.position_x && data.position_y) {
 // apply the object-position property using jQuery's css() function
 $nextImage.css('object-position', data.position_x + '% ' + data.position_y + '%');
}

Listing 41: Positioning the image to using object-position to control which areas are cropped.

Figure 6: The result of using object-position to control the cropping process.

97 Proof of Concept: Travel Website using Responsive Fullscreen Images

Not all browsers support the object-fit and object-position properties [138]. Sa-
fari only supports the object-fit property, but not object-position. The object-posi-
tion property is the only method to control the cropping process when the object-
fit property is used to display images in fullscreen mode. That said, if the cropping
has to be controlled, the object-fit fullscreen approach is not suitable for browsers
without object-position support. A workaround is to fallback to a JS-based
fullscreen approach and use a plugin like FocusPoint [133] to adjust the cropping
process. The prototype does provide a fallback for object-fit and object-position. Its
implementation is covered in Section 4.3.5.

The dynamic switching between destinations is implemented using JS. A click
anywhere within the viewport area initiates the loading of the next destination.
Touch and keyboard control is supported as well and is covered in Section 4.3.4.
This is done by binding the respective input event handlers to the <body> element.
These event handlers execute the loadNextImage function. The function sends an
HTTP GET request to the get_image.php script using AJAX. The get_image.php
script randomly selects one destination from the $destinations array of the desti-
nation_data.php file. The selected destination data is sent back to the client as a
JSON-encoded object. The image_tag property of this object contains the ready-
to-use HTML code of the destination's element. The tag is put together by
the get_image.php script. jQuery is used on the client to append the new tag
to the <div class="fullscreen-images"> container using the appendTo function.
The following listing shows the loadNextImage function. Please note that less im-
portant parts of the function have been omitted due to a lack of space.

4.3.4 Responsive User Interface

This section covers the implementation of the responsive user interface. It is not
within the scope of this work to explain every step in great detail. The header bar
on the top of the page is implemented using a percentage width of 100%. This
causes the bar to adjust to the screen size automatically. Other than that, the des-
tination information box is the main element which needs adaption to the screen

function loadNextImage() {
 var $currentImage = $('.current');
 $.getJSON('get_image.php', function(data){
 $nextImage = $(data.image_tag).hide();
 $nextImage.one('load', function() {
 $nextImage.appendTo('.fullscreen-images').show().addClass('current);
 $currentImage.remove();
 }
 }
}

Listing 42: Conceptual working of the loadNextImage function to load and display the next
destination.

98 Proof of Concept: Travel Website using Responsive Fullscreen Images

size. The following listing shows how this is done using CSS media queries. Please
note that some less important declarations have been omitted.

The above CSS media queries and declarations cause the information box to
only display two information fields side by side. As the below figure shows, the re -
sult is an optimized view for narrow devices like smartphones.

As we learned in Section 2.4, being responsive is not only about adapting the
website to the screen of the device. It is about taking advantage of other device ca-
pabilities as well. The prototype supports various input types to fulfill this issue.
The request of the next destination can be triggered by clicking with the mouse,
pressing the right arrow key, or swiping to the left on devices with a touch screen.

@media screen and (max-width: 420px) {
 .information-box {
 width: 90%; /* change the width of the entire information box to 90% of the viewport */
 left: 5vw; /* set the left and bottom distance from the edges to 5% of the viewport */
 bottom : 5vw; /* width (90% box + 2 × 5% left and (implicitly) right margin = 100%)
 }
 .single-info-box {
 width: 50%; /* change the width of individual each info box from 33.3% to 50% to
 display two boxes next to each other instead of three. */
 }
}

Listing 43: CSS media query to adapt the information box to narrow viewports.

Figure 7: Screenshot of the main view of the prototype on a narrow viewport, eg. a smartphone.

99 Proof of Concept: Travel Website using Responsive Fullscreen Images

The following listing shows how to implement each of the three methods using
jQuery, and the Hammer.JS library for the touch event.

Another feature to increase the user experience is the Fullscreen API [24]. It
gives the fullscreen images even more space by displaying the website in real
fullscreen mode, without the browser's user interface. This is especially interesting

for our fullscreen images website. The following listing shows how to implement the
Fullscreen API using all vendor prefixes for best compatibility [145]. The target el-
ement is the document.documentElement DOM property, which represents the <html>
element.

// bind events handlers to the click and keydown events
$(document).on('click', 'body', function() {
 loadNextImage(); // call loadNextImage() when the user clicks somewhere within the <body>
}).keydown(function(event) {
 if (event.which == 39) {
 loadNextImage(); // call loadNextImage() when the user hits the right arrow key
 }
});

// bind an event handler to the swipeleft event provided by the Hammer.JS library
var hammer = new Hammer(document.body);
 hammer.on("swipeleft", function(event) {
 loadNextImage(); // call loadNextImage() when the user swipes to the left on a touch device
});

Listing 44: Binding click, keydown and swipeleft events to the <body> element to initiate the
loading of the next image.

$('.go-fullscreen').on('click', function(event){
 var element = document.documentElement;
 if(element.requestFullscreen) {
 element.requestFullscreen();
 } else if(element.mozRequestFullScreen) {
 element.mozRequestFullScreen();
 } else if(element.webkitRequestFullscreen) {
 element.webkitRequestFullscreen();
 } else if(element.msRequestFullscreen) {
 element.msRequestFullscreen();
 }
 event.stopPropagation();
 return false;
});

Listing 45: Using the Fullscreen API with the prefixed functions of all major browser vendors.

100 Proof of Concept: Travel Website using Responsive Fullscreen Images

4.3.5 Fallbacks and Workarounds

All workarounds and fallbacks are implemented with the support of Modernizr
[142]. Modernizr is a JS library to detect a wide range of device and browser fea-
tures. Feature detection can be used to progressively enhance a website or disable
features which require unsupported browser functions. The prototype uses Modern-
izr to detect support for the srcset attribute, the object-fit property, and the
fullscreen API. The results of the detection can be accessed using the window.Mod-
ernizr object. The object contains one property which is either true (supported) or
false (unsupported) for every tested feature. Modernizr additionally adds CSS
classes to the <html> element to indicate the feature detection results. For example,
the class srcset is added if the srcset attribute is supported, and no-srcset other-
wise.

The srcset attribute detection is needed for the picturefill polyfill. Picturefill
calls itself several times during the page loading phase and on a resize of the
browser window to (re-)evaluate all and <picture> tags. However, the images
of the prototype are injected dynamically into the DOM. This requires picturefill to
be called manually after the injection. Modernizr is used to only call picturefill if
no srcset support is available.

The detection of the object-fit property is needed to fallback to a JS-based
fullscreen images approach if the property is not supported. In that case, the resiz-
ing and positioning of the fullscreen image has to be done manually. The following
listing shows the custom resize function that emulates the object-fit: cover; func-
tionality. The code is based on the jQuery Backstrech plugin, a fullscreen images
script [136].

if (! Modernizr['srcset']) {
 picturefill({ elements: $nextImage.get() }); // call picturefill() for the next image.
}

Listing 46: Using Modernizr to conditionally call the picturefill function if no srcset attribute
support was detected.

101 Proof of Concept: Travel Website using Responsive Fullscreen Images

The detection of the Fullscreen API is used to hide the “Go Fullscreen” link in
browsers without Fullscreen API support [146]. This is done using the CSS classes
that Modernizr adds to the <html> element. The following listing shows the CSS
rule to hide the “Go Fullscreen” link in unsupported browsers.

4.4 Discussion

The created prototype demonstrates how responsive images can be implemented
and combined with fullscreen images using a real-world example. The purpose was
to deepen the understanding of responsive images and their application. Another
aim was to present workaround and fallback strategies. The Modernizr script is
recommended to detect browser support for certain features. Using Modernizr, a

if (! Modernizr['object-fit']) {
 resize($nextImage); // call the resize function only if the object-fit is not supported.
}

function resize($imgElement) {
 // get the viewport width and height and calculate the image's aspect ratio.
 var imageCSS = {left: 0, top: 0}
 , viewportWidth = $(window).width()
 , imageWidth = viewportWidth
 , viewportHeight = $(window).height()
 , imageAspectRatio = $imgElement.prop('naturalWidth') / $imgElement.prop('naturalHeight')
 , imageHeight = imageWidth / imageAspectRatio
 , imageOffset;

 if (imageHeight >= viewportHeight) {
 // the image's aspect ratio is smaller than the viewport's aspect ratio
 imageOffset = (imageHeight - viewportHeight) / 2; // calculate the offset to center the
 imageCSS.top = '-' + imageOffset + 'px'; // image vertically
 }
 else {
 // the image's aspect ratio is bigger than the viewport's aspect ratio
 imageHeight = viewportHeight; // set the height to the viewport height
 imageWidth = imageHeight * imageAspectRatio; // calculate width using the aspect ratio
 imageOffset = (imageWidth - viewportWidth) / 2; // calculate the offset to center the
 imageCSS.left = '-' + imageOffset + 'px'; // image horizontally
 }

 imageCSS.width = imageWidth; // add the correct width to the css object
 imageCSS.height = imageHeight; // add the correct height to the css object
 $imgElement.css(imageCSS); // apply the width, height, top, and left properties
} // to the image

Listing 47: Set the with and height of an image to cover the viewport.

html.no-fullscreen .go-fullscreen-link {
 // this rule is only applied if Modernizr added the no-fullscreen class to the <html> tag
 display: none;
}

Listing 48: Hide the “Go Fullscreen” link based on the Modernizr feature detection result.

102 Proof of Concept: Travel Website using Responsive Fullscreen Images

workaround for the object-fit property was implemented and tested in several
browsers. It could be shown that the native HTML5 responsive images solution is
ready for production use. Older and unsupported browsers can easily be supported
using the picturefill polyfill. A drawback of the polyfill is the dependency on JS.
This issue can be encountered by serving the tags with a default image in the
src attribute. The default images is then used for also non-JS users. However, the
default image might be preloaded by JS-enabled browsers and then be replaced by
another image version using JS. That said, even though the native HTML5 respon-
sive images solution is highly recommended, the implementation details are always
a tradeoff between support and performance. The ideal decision does vary based on
the requirements of every individual project.

As stated at the beginning of Section 4.3, it was out of the scope of this work to
implement the entire application. The following presents the limitations of the pro-
totype and suggests ideas for future improvement.

An issue with the prototype is that the used srcset attribute only considers the
width of the image. Images are selected considering the width descriptors. The de-
scriptor values are matched with the calculated value of the sizes attribute, which
is 100vw for fullscreen images. However, the aspect ratio of the image and the
screen may greatly vary. Most used images have a widescreen aspect ratio, eg. 16:9,
but a user's device might be in portrait mode with an aspect ratio of 9:16. The re-
sult is that the image has to be upscaled by 1.7 (=16/9) on the client. Figure 3 (p.
87) illustrates the issue. The result is a great reduction of the image quality and
thus, a poor user experience. This issue can be encountered using the <picture> ele-
ment and deliver pre-cropped images based on the aspect ratio using art direction.

Another recommendation for future enhancements of the prototype is to provide
more image versions. More than the six widths of the prototype should be supplied.
Resolutions of up to 3840 pixels in width are needed to provide high quality images
to Ultra HD screens. The images can additionally be served in several image for-
mats, eg. WebP.

The prototype was tested in all major browsers, several mobile devices, and
tablets. However, more testing is highly recommended. For example, an issue was
encountered when testing iPhones running iOS version 8. The Safari browser of the
given phone supports the srcset attribute with the pixel density descriptor, but not
the width descriptor. A bug in Safari causes the width descriptors to be evaluated
without considering the DPR, which results in the wrong image being selected
[147]. Repeatedly calling the picturefill function of the picturefill polyfill after the
page has loaded does solve this issue. This bug shows that many devices, including
older ones, have to be tested before launching a website. More incompatibilities are
likely to be encountered and can be fixed using workarounds. More on testing re-
sponsive websites is covered in Section 3.5.2.

103 Conclusion

5 Conclusion

The RWD technique has helped web developers to create websites that adapt to
the device used to access them. However, RWD does not sufficiently address im-
ages. The same image desktop-optimized files are delivered to all devices. Respon-
sive images approaches address this issue by delivering properly dimensioned im-
ages for every device to reduce the overall page size. This work evaluated six com-
mon responsive images solutions according to a created evaluation framework. The
purpose was to provide a guideline and support software architects and developers
in their decision making when planning web projects.

The following briefly outlines the findings and their implications. It was shown
that the current responsive images issues are mostly solved. The results clearly de-
pict that the native HTML5 solution is the most mature evaluated solution. The
solution supports all functional requirements and performs very well for the non-
functional requirements. None of the evaluated system prerequisites are needed in
order to use the native HTML5 solution. The lack of browser support can easily be
overcome with the picturefill polyfill. However, the polyfill requires JS to be avail -
able. The solution is standardized and future-proof. Thus, the native HTML5 solu-
tion is strongly recommended for most projects.

The following proposes a guideline for the selection of a responsive images ap-
proach. As stated above, the native HTML5 solution should be examined first. In
the rare cases where it is not sufficient – likely due to a lack of integrability or a
lack of browser support – other solutions should be considered as well. The evalua-
tion in Section 3.3 and its results and discussion in Section 3.5 provide a thorough
overview of common solutions. The HTTP Client Hints solution was found to be a
highly integrable approach and is recommended for legacy applications once it is
widely supported. The CSS Background Images solution is a sensible approach for
websites with only a few images that need to be displayed in fullscreen mode.

The creation of the prototype of a travel website using fullscreen images demon-
strated the implementation of a real-world example. It showed that fallbacks can
be provided for many browser incompatibilities using feature detection, polyfills,
and custom workarounds. However, a lot of testing with a wide range of different
devices is highly recommended. The inconsistent behavior of many browsers and
devices causes unexpected results, which can only be detected by testing.

The future prospects of responsive images are encouraging. The native HTML5
solution is expected to be supported by all major browsers shortly. This will take
longer for HTTP Client Hints, but it will then offer a valuable addition. The im-
age-set CSS property is planned to be enhanced, which could prove useful. More
research needs to be done on responsive image formats. Their idea is to store multi-
ple image versions in a single file and let the browser load only the parts needed.

104 References

References

[1] E. Marcotte, Responsive Web Design, 2nd ed. New York: A Book Apart, 2014.

[2] A. Brisbane, “Speakers Give Sound Advice,” The Post-Standard, New York, 28-Mar-1911.

[3] S. P. Anderson, Seductive Interaction Design: Creating Playful, Fun, and Effective User
Experiences. Berkeley, CA: New Riders, 2011.

[4] “Interesting Stats,” HTTP Archive. [Online]. Available:
http://httparchive.org/interesting.php. [Accessed: 03-Aug-2015].

[5] T. Kadlec, “Why we need responsive images,” Tim Kadlec’s Blog, 11-Jun-2013. [Online].
Available: http://timkadlec.com/2013/06/why-we-need-responsive-images/. [Accessed: 06-
Jan-2015].

[6] W3C Working Group, “The history of the Web,” W3C Wiki. [Online]. Available:
http://www.w3.org/wiki/The_history_of_the_Web. [Accessed: 17-Mar-2015].

[7] I. Hickson, “Interview with Ian Hickson, HTML editor,” HTML5 Doctor, 08-Jan-2013.
[Online]. Available: http://html5doctor.com/interview-with-ian-hickson-html-editor/.
[Accessed: 26-Feb-2015].

[8] Apple, “Configuring the Viewport,” Apple Developer, 01-Oct-2007. [Online]. Available:
https://developer.apple.com/library/mac/documentation/AppleApplications/Reference/Sa
fariWebContent/UsingtheViewport/UsingtheViewport.html. [Accessed: 18-Mar-2015].

[9] W3C Working Group, “The web standards model - HTML, CSS and JavaScript,” W3C
Wiki, 2012. [Online]. Available:
http://www.w3.org/community/webed/wiki/The_web_standards_model_-
_HTML_CSS_and_JavaScript. [Accessed: 23-Mar-2015].

[10] D. Shea, “CSS Zen Garden: The Beauty of CSS Design,” 2003. [Online]. Available:
http://www.csszengarden.com/. [Accessed: 23-Mar-2015].

[11] WHATWG, “HTML Living Standard,” 2015. [Online]. Available:
https://html.spec.whatwg.org/multipage/. [Accessed: 28-Feb-2015].

[12] W3C Working Group, “HTML5 W3C Recommendation,” 28-Oct-2014. [Online]. Available:
http://www.w3.org/TR/html5/. [Accessed: 23-Mar-2015].

[13] M. MacDonald, HTML5: The Missing Manual. O’Reilly Media, 2013.

[14] D. S. McFarland, CSS3: The Missing Manual, 3rd ed. Sebastopol, CA: O’Reilly Media,
2013.

[15] T. Atkins, H. W. Lie, and E. J. Etemad, “CSS Values and Units Module Level 3,” 30-Jul-
2013. [Online]. Available: http://www.w3.org/TR/2013/CR-css3-values-20130730/.
[Accessed: 24-Jul-2015].

[16] C. Zapponi, “Programming Languages and GitHub,” GitHut, 2015. [Online]. Available:
http://githut.info/. [Accessed: 21-Apr-2015].

[17] D. Flanagan, JavaScript: The Definitive Guide, 6th ed. Beijing ; Sebastopol, CA: O’Reilly  
Media, 2011.

105 References

[18] A. Freeman, Pro jQuery 2.0, 2 edition. Apress, 2013.

[19] P. Gasston, The modern Web: multi-device Web development with HTML5, CSS3, and
JavaScript. San Francisco: No Starch Press, 2013.

[20] A. Popescu, “Geolocation API Specification,” 24-Oct-2013. [Online]. Available:
http://www.w3.org/TR/2013/REC-geolocation-API-20131024/. [Accessed: 15-Jul-2015].

[21] A. Kostiainen and M. Lamouri, “Battery Status API Specification,” 09-Dec-2014. [Online].
Available: http://www.w3.org/TR/2014/CR-battery-status-20141209/. [Accessed: 15-Jul-
2015].

[22] W3C Working Group, “Device APIs Working Group - W3C,” 2015. [Online]. Available:
http://www.w3.org/2009/dap/. [Accessed: 15-Jul-2015].

[23] M. Lamouri and M. Cáceres, “The Screen Orientation API Specification,” 28-Apr-2015.
[Online]. Available: http://www.w3.org/TR/2015/WD-screen-orientation-20150428/.
[Accessed: 15-Jul-2015].

[24] WHATWG, “Fullscreen API Standard,” 27-Jul-2015. [Online]. Available:
https://fullscreen.spec.whatwg.org/. [Accessed: 07-Aug-2015].

[25] “Why do people disable JavaScript?,” Stackexchange, 14-Dec-2010. [Online]. Available:
http://programmers.stackexchange.com/a/26186. [Accessed: 04-Jul-2015].

[26] A. Gustafson, “Understanding Progressive Enhancement,” A List Apart, 07-Oct-2008.
[Online]. Available: http://alistapart.com/article/understandingprogressiveenhancement.
[Accessed: 04-Jul-2015].

[27] R. Fielding and J. Reschke, “RFC 7231 - Hypertext Transfer Protocol (HTTP/1.1):
Semantics and Content,” Internet Engineering Task Force, 2014. [Online]. Available:
http://tools.ietf.org/html/rfc7231#section-5.3. [Accessed: 13-Jul-2015].

[28] A. Barth, “RFC 6265 - HTTP State Management Mechanism,” Internet Engineering Task
Force, 2011. [Online]. Available: http://tools.ietf.org/html/rfc6265. [Accessed: 29-Jul-
2015].

[29] I. Grigorik, “HTTP caching — Web Fundamentals,” Google Developers, 01-Jan-2014.
[Online]. Available:
https://developers.google.com/web/fundamentals/performance/optimizing-content-
efficiency/http-caching#defining-optimal-cache-control-policy. [Accessed: 08-Aug-2015].

[30] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee,
“RFC 2616 - Hypertext Transfer Protocol -- HTTP/1.1,” Internet Engineering Task Force,
1999. [Online]. Available: http://tools.ietf.org/html/rfc2616. [Accessed: 29-Jul-2015].

[31] “StatCounter Global Stats,” 2015. [Online]. Available: http://gs.statcounter.com/.
[Accessed: 25-Apr-2015].

[32] “Browser Trends April 2015: StatCounter vs NetMarketShare,” SitePoint. .

[33] A. Deveria, “Can I use... Support tables for HTML5, CSS3, etc,” caniuse, 2015. [Online].
Available: http://caniuse.com/. [Accessed: 18-Mar-2015].

[34] Mozilla Foundation, “Mozilla Developer Network,” 2015. [Online]. Available:
https://developer.mozilla.org/en-US/. [Accessed: 18-Mar-2015].

106 References

[35] T. Kadlec, Implementing responsive design: building sites for an anywhere, everywhere
web. Berkeley, CA: New Riders, 2013.

[36] T. Garsiel and P. Irish, “How Browsers Work: Behind the scenes of modern web browsers,”
HTML5 Rocks, 05-Aug-2011. [Online]. Available:
http://www.html5rocks.com/en/tutorials/internals/howbrowserswork/. [Accessed: 06-Jan-
2015].

[37] A. Davies, “How the Browser Pre-loader Makes Pages Load Faster,” 22-Oct-2013. [Online].
Available: http://andydavies.me/blog/2013/10/22/how-the-browser-pre-loader-makes-
pages-load-faster/. [Accessed: 25-Jun-2015].

[38] P. Thomakos, “How Javascript Loading Works - DOMContentLoaded and OnLoad,” 14-
Jun-2011. [Online]. Available: http://ablogaboutcode.com/2011/06/14/how-javascript-
loading-works-domcontentloaded-and-onload/. [Accessed: 18-Jul-2015].

[39] P.-P. Koch, “A tale of two viewports — part two,” Quirksmode, 2010. [Online]. Available:
http://www.quirksmode.org/mobile/viewports2.html. [Accessed: 03-Jan-2015].

[40] P.-P. Koch, The Mobile Viewports. CSS Day Amsterdam, 2014.

[41] P.-P. Koch, “A tale of two viewports — part one,” Quirksmode, 2010. [Online]. Available:
http://www.quirksmode.org/mobile/viewports.html. [Accessed: 03-Jan-2015].

[42] G. Cummins, “Difference between visual viewport and layout viewport?,” Stackoverflow,
13-Jun-2011. [Online]. Available: http://stackoverflow.com/a/6333966. [Accessed: 15-Jul-
2015].

[43] P.-P. Koch, “A Pixel is not a Pixel is not a Pixel,” Quirksmode. [Online]. Available:
http://www.quirksmode.org/blog/archives/2010/04/a_pixel_is_not.html. [Accessed: 27-
Feb-2015].

[44] P.-P. Koch, “Meta viewport,” Quirksmode, 13-Apr-2014. [Online]. Available:
http://www.quirksmode.org/mobile/metaviewport/. [Accessed: 24-Jul-2015].

[45] A. van Kesteren, “CSSOM View Module,” W3C, 17-Dec-2013. [Online]. Available:
http://www.w3.org/TR/cssom-view/. [Accessed: 24-Jul-2015].

[46] P.-P. Koch, “Desktop media query bugs 2: DPR and zoom level,” Quirksmode, 03-Dec-
2013. [Online]. Available:
http://www.quirksmode.org/blog/archives/2013/12/desktop_media_q_1.html. [Accessed:
28-Jul-2015].

[47] OpenSignal, Inc., “Android Fragmentation Report August 2014,” Aug-2014. [Online].
Available: http://opensignal.com/reports/2014/android-fragmentation/. [Accessed: 23-
Apr-2015].

[48] Google, “The New Multi-Screen World: Understanding Cross-Platform Consumer
Behavior.” Google, 2012.

[49] P.-P. Koch, “screen.width is useless,” Quirksmode, 13-Nov-2013. [Online]. Available:
http://www.quirksmode.org/blog/archives/2013/11/screenwidth_is.html. [Accessed: 22-
Jul-2015].

[50] J. Koch, “screen width is still useless,” Sevenval Blog, 10-Mar-2015. [Online]. Available:
http://blog.sevenval.com/4013/screen-width-is-still-useless/. [Accessed: 08-Aug-2015].

107 References

[51] “Gartner Says Worldwide PC Shipments Declined 5.2 Percent in First Quarter of 2015,”
09-Apr-2015. [Online]. Available: http://www.gartner.com/newsroom/id/3026217.
[Accessed: 23-Apr-2015].

[52] “Is Mobile Bringing About the Death of the PC? Not Exactly… - comScore, Inc.” [Online].
Available: http://www.comscore.com/Insights/Blog/Is-Mobile-Bringing-About-the-Death-
of-the-PC-Not-Exactly. [Accessed: 23-Apr-2015].

[53] “2 Billion Consumers Worldwide to Get Smart(phones) by 2016 - eMarketer,” 11-Dec-2014.
[Online]. Available: http://www.emarketer.com/Article/2-Billion-Consumers-Worldwide-
Smartphones-by-2016/1011694. [Accessed: 25-Apr-2015].

[54] J. Stark, “The 10 principles of mobile interface design,” 12-Apr-2012. [Online]. Available:
http://www.creativebloq.com/mobile/10-principles-mobile-interface-design-4122910.
[Accessed: 07-Jan-2015].

[55] D. Storey, “See your site like the rest of the world does. On the Nokia X2-01,” 12-Sep-
2012. [Online]. Available: http://generatedcontent.org/post/31441135779/mobileweb-row.
[Accessed: 25-Apr-2015].

[56] Leichtman Research Group, “Internet-connected TVs in the US,” 06-Jun-2014. [Online].
Available: http://www.leichtmanresearch.com/press/060614release.html. [Accessed: 25-
Apr-2015].

[57] N. Leenheer, “How well does your browser support HTML5?,” HTML5test, 2015. [Online].
Available: https://html5test.com/results/other.html. [Accessed: 25-Apr-2015].

[58] “Smart TV,” Wikipedia, 25-Jul-2015. [Online]. Available:
https://en.wikipedia.org/wiki/Smart_TV. [Accessed: 08-Aug-2015].

[59] J. Grigsby, “The Immobile Web,” Breaking Development Conference, Apr-2012. [Online].
Available: https://vimeo.com/44036520. [Accessed: 25-Apr-2015].

[60] “Developing for TVs,” Dev.Opera. [Online]. Available: https://dev.opera.com/tv/.
[Accessed: 25-Apr-2015].

[61] A. Debenham, “Test of game console browsers,” 2014. [Online]. Available:
http://console.maban.co.uk/. [Accessed: 02-Aug-2015].

[62] “Smart watches shipments worldwide 2013-2015,” Statista, 2014. [Online]. Available:
http://www.statista.com/statistics/302722/smart-watches-shipments-worldwide/.
[Accessed: 01-Aug-2015].

[63] E. Marcotte, “Responsive Web Design,” A List Apart, 25-May-2010. [Online]. Available:
http://alistapart.com/article/responsive-web-design. [Accessed: 01-Mar-2015].

[64] J. Grigsby, “Defining Responsiveness,” Cloud Four Blog, 07-Jan-2014. [Online]. Available:
http://blog.cloudfour.com/defining-responsiveness/. [Accessed: 11-Jan-2015].

[65] L. Danger Gardner, “What We Mean When We Say ‘responsive,’” A List Apart, 06-Mar-
2014. [Online]. Available: http://alistapart.com/column/what-we-mean-when-we-say-
responsive. [Accessed: 11-Jan-2015].

[66] J. Zeldman, “Evolving Responsive Web Design,” Jeffrey Zeldman’s Blog, 09-Mar-2014.
[Online]. Available: http://www.zeldman.com/2014/03/09/evolving-responsive-web-
design/. [Accessed: 11-Mar-2015].

108 References

[67] J. Allsopp, “A Dao of Web Design,” A List Apart, 07-Apr-2000. [Online]. Available:
http://alistapart.com/article/dao. [Accessed: 10-Jan-2015].

[68] J. Nielsen, “Computer Screens Getting Bigger,” Nielsen Norman Group, 07-May-2012.
[Online]. Available: http://www.nngroup.com/articles/computer-screens-getting-bigger/.
[Accessed: 11-Mar-2015].

[69] E. Bidelman, “‘Mobifying’ Your HTML5 Site,” HTML5 Rocks, 03-Mar-2011. [Online].
Available: http://www.html5rocks.com/en/mobile/mobifying/. [Accessed: 09-Aug-2015].

[70] W3C Working Group, “W3C Recommendation: Media Queries,” W3C, 19-Jun-2012.
[Online]. Available: http://www.w3.org/TR/css3-mediaqueries/. [Accessed: 10-Mar-2015].

[71] M. Carver, The Responsive Web. Manning, 2015.

[72] T. Kadlec, “Beyond Responsive,” Tim Kadlec’s Blog, 07-Jan-2014. [Online]. Available:
http://timkadlec.com/2014/01/beyond-responsive/. [Accessed: 13-Mar-2015].

[73] B. Frost, “Beyond Media Queries: Anatomy of an Adaptive Web Design,” Brad Frost’s
Blog, 07-Aug-2012. [Online]. Available: http://bradfrost.com/blog/mobile/beyond-media-
queries-anatomy-of-an-adaptive-web-design/. [Accessed: 13-Mar-2015].

[74] S. Jehl, Responsible Responsive Design. A Book Apart, 2014.

[75] M. Wilcox, Adaptive Images. 2012.

[76] W3C Working Group, “Images in HTML,” W3C Wiki, 14-Mar-2014. [Online]. Available:
http://www.w3.org/wiki/Images_in_HTML. [Accessed: 01-May-2015].

[77] I. Grigorik, “Image optimization — Web Fundamentals,” Google Developers, 07-May-2014.
[Online]. Available:
https://developers.google.com/web/fundamentals/performance/optimizing-content-
efficiency/image-optimization. [Accessed: 08-Aug-2015].

[78] I. Grigorik, High Performance Browser Networking: What every web developer should
know about networking and web performance, 1 edition. O’Reilly Media, 2013.

[79] W3C Working Group, “Use Cases and Requirements for Standardizing Responsive
Images,” W3C, 07-Nov-2013. [Online]. Available: http://www.w3.org/TR/respimg-
usecases/. [Accessed: 01-Mar-2015].

[80] J. Nielsen, “Website Response Times,” Nielsen Norman Group, 21-Jun-2010. [Online].
Available: http://www.nngroup.com/articles/website-response-times/. [Accessed: 08-Aug-
2015].

[81] E. Portis, “Responsive Images in Practice,” A List Apart, 04-Nov-2014. [Online]. Available:
http://alistapart.com/article/responsive-images-in-practice. [Accessed: 11-Jan-2015].

[82] Y. Weiss, “Picture Element Implementation in Blink,” Indiegogo, 20-Mar-2014. [Online].
Available: http://www.indiegogo.com/projects/661393/fblk. [Accessed: 01-Mar-2015].

[83] Microsoft, “picture element - Internet Explorer Web Platform Status and Roadmap,”
modern.IE, 13-May-2015. [Online]. Available: https://status.modern.ie/pictureelement.
[Accessed: 13-May-2015].

[84] Y. Weiss, “Native Responsive Images,” Dev.Opera, 19-Aug-2014. [Online]. Available:
https://dev.opera.com/articles/native-responsive-images/. [Accessed: 27-Jul-2015].

109 References

[85] C. Coyier, “Which responsive images solution should you use?,” CSS-Tricks, 11-May-2012.
[Online]. Available: https://css-tricks.com/which-responsive-images-solution-should-you-
use/. [Accessed: 22-Jun-2015].

[86] D. Walsh, “Responsive Images: The Ultimate Guide,” David Walsh’s Blog, 16-Oct-2014.
[Online]. Available: http://davidwalsh.name/responsive-images. [Accessed: 22-Jun-2015].

[87] K. Damball, “One Size Fits Some: A Guide to Responsive Design Image Solutions,” Toptal
Engineering Blog, 05-Dec-2014. [Online]. Available: http://www.toptal.com/responsive-
web/one-size-fits-some-an-examination-of-responsive-image-solutions. [Accessed: 22-Jun-
2015].

[88] B. Smus, “High DPI Images for Variable Pixel Densities,” HTML5 Rocks, 22-Aug-2012.
[Online]. Available: http://www.html5rocks.com/en/mobile/high-dpi/. [Accessed: 08-Aug-
2015].

[89] Microsoft, “Internet Explorer Web Platform Status and Roadmap,” modern.IE, 2015.
[Online]. Available: https://status.modern.ie/. [Accessed: 22-Jun-2015].

[90] “WebKit Bugzilla,” 2015. [Online]. Available: https://bugs.webkit.org/. [Accessed: 22-Jul-
2015].

[91] Mozilla Foundation, “Mozilla Bugzilla,” 2015. [Online]. Available:
https://bugzilla.mozilla.org/. [Accessed: 22-Jun-2015].

[92] J. Grigsby, “The Forgotten Responsive Images Spec: image-set(),” Cloud Four Blog, 27-
Oct-2014. [Online]. Available: http://blog.cloudfour.com/the-forgotten-responsive-images-
spec-image-set/. [Accessed: 22-Jun-2015].

[93] N. Gallagher, “Responsive images using CSS3,” Nicolas Gallagher’s Blog, 19-May-2011.
[Online]. Available: http://nicolasgallagher.com/responsive-images-using-css3/. [Accessed:
22-Jun-2015].

[94] T. Atkins and Fantasai, “CSS Image Values and Replaced Content Module Level 3,” 29-
May-2015. [Online]. Available: https://drafts.csswg.org/css-images-3/. [Accessed: 08-Aug-
2015].

[95] “Most Common User Agents,” Tech Blog. [Online]. Available:
https://techblog.willshouse.com/2012/01/03/most-common-user-agents/. [Accessed: 25-
Jun-2015].

[96] ScientiaMobile, “WURFL - Mobile Device Database,” 13-May-2015. [Online]. Available:
http://wurfl.sourceforge.net/. [Accessed: 13-May-2015].

[97] A. Andersen, “History of the browser user-agent string,” WebAIM, 03-Sep-2008. [Online].
Available: http://webaim.org/blog/user-agent-string-history/. [Accessed: 26-Jun-2015].

[98] Mozilla Developer Network, “Browser detection using the user agent,” Mozilla Developer
Network, 10-Mar-2014. [Online]. Available: https://developer.mozilla.org/en-
US/docs/Browser_detection_using_the_user_agent. [Accessed: 25-Jun-2015].

[99] M. Wilcox, “Adaptive Images in HTML.” [Online]. Available: http://adaptive-
images.com/. [Accessed: 27-Jun-2015].

[100] Ş. Ghiţă, “Mobile Detect - lightweight PHP class for detecting mobile devices (including
tablets),” 2015. [Online]. Available: http://mobiledetect.net/. [Accessed: 27-Jun-2015].

110 References

[101] Mozilla Developer Network, “Same-origin policy,” Mozilla Developer Network, 2015.
[Online]. Available: https://developer.mozilla.org/en-US/docs/Web/Security/Same-
origin_policy. [Accessed: 22-Jul-2015].

[102] P.-P. Koch, “Browser compatibility — viewports,” Quirksmode, 13-Nov-2013. [Online].
Available: http://www.quirksmode.org/mobile/tableViewport.html. [Accessed: 24-Jul-
2015].

[103] Y. Weiss, “Preloaders, cookies and race conditions,” Yoav Weiss’ Blog, 28-Sep-2011.
[Online]. Available: http://blog.yoav.ws/preloaders_cookies_and_race_conditions/.
[Accessed: 08-Jul-2015].

[104] I. Grigorik, “HTTP Client Hints (Internet Draft),” GitHub, 18-Jun-2015. [Online].
Available: http://igrigorik.github.io/http-client-hints/. [Accessed: 14-Jul-2015].

[105] Y. Weiss, “Client Hints - Browser implementation considerations,” GitHub, 06-Jul-2015.
[Online]. Available: https://github.com/yoavweiss/http-client-
hints/blob/95fd1867c6ecaf475d59520bb52f32ce7ae6cc0b/browser_implementation_conside
rations.md. [Accessed: 14-Jul-2015].

[106] R. Mulhuijzen, “Best Practices for Using the Vary Header,” Fastly - The Next Gen CDN,
18-Aug-2014. [Online]. Available: https://www.fastly.com/blog/best-practices-for-using-
the-vary-header/. [Accessed: 14-Jul-2015].

[107] Y. Weiss, “Client Hints 1,” WebKit-dev Mailing List Archive, 23-Apr-2015. [Online].
Available: https://lists.webkit.org/pipermail/webkit-dev/2015-April/027381.html.
[Accessed: 14-Jul-2015].

[108] M. Stachowiak, “Client Hints 2,” WebKit-dev Mailing List Archive, 05-May-2015. [Online].
Available: https://lists.webkit.org/pipermail/webkit-dev/2015-May/027418.html.
[Accessed: 14-Jul-2015].

[109] Y. Weiss, “Content-DPR header,” WebKit-dev Mailing List Archive, 29-May-2015.
[Online]. Available: https://lists.webkit.org/pipermail/webkit-dev/2015-May/027469.html.
[Accessed: 14-Jul-2015].

[110] Y. Weiss, “Bug 145380 – Add Content-DPR header support,” WebKit Bugzilla, 26-May-
2015. [Online]. Available: https://bugs.webkit.org/show_bug.cgi?id=145380. [Accessed:
14-Jul-2015].

[111] Y. Weiss, “Intent to Ship: DPR, Width, and Viewport-Width client hints–Google Groups,”
19-Jun-2015. [Online]. Available:
https://groups.google.com/a/chromium.org/d/topic/blink-dev/vvX1vCQihDE/discussion.
[Accessed: 14-Jul-2015].

[112] I. Grigorik, “Bug 935216 – Implement Client-Hints HTTP header,” Mozilla Bugzilla, 24-
Jun-2015. [Online]. Available: https://bugzilla.mozilla.org/show_bug.cgi?id=935216.
[Accessed: 14-Jul-2015].

[113] Microsoft, “HTTP Client Hints - Internet Explorer Status and Roadmap,” modern.IE, 14-
Jul-2015. [Online]. Available: https://status.modern.ie/httpclienthints?term=client
%20hints. [Accessed: 14-Jul-2015].

[114] A. Deveria, “CSS3 Media Queries browser support,” caniuse, 2015. [Online]. Available:
http://caniuse.com/css-mediaqueries. [Accessed: 10-Mar-2015].

111 References

[115] D. Knight, “weblinc/media-match,” GitHub, 08-Jun-2013. [Online]. Available:
https://github.com/weblinc/media-match. [Accessed: 22-Jul-2015].

[116] T. Kadlec, “Media Query & Asset Downloading Results,” Tim Kadlec’s Blog, 10-Apr-2012.
[Online]. Available: http://timkadlec.com/2012/04/media-query-asset-downloading-
results/. [Accessed: 19-Jul-2015].

[117] C. Coyier, “Retina Display Media Query,” CSS-Tricks, 14-Feb-2013. [Online]. Available:
https://css-tricks.com/snippets/css/retina-display-media-query/. [Accessed: 23-Jul-2015].

[118] A. Deveria, “resolution media feature browser support,” caniuse, 2015. [Online]. Available:
http://caniuse.com/css-media-resolution. [Accessed: 24-Jul-2015].

[119] L. Weintraub and E. A. Eklund, “LayoutUnit – WebKit,” 06-Apr-2013. [Online].
Available: http://trac.webkit.org/wiki/LayoutUnit. [Accessed: 24-Jul-2015].

[120] O. Saunders, “Using JavaScript to estimate connection speed,” Blog | Decade City, 08-
May-2013. [Online]. Available: https://decadecity.net/blog/2013/05/08/using-javascript-
to-estimate-connection-speed. [Accessed: 24-Jul-2015].

[121] N. C. Zakas, “Empty image src can destroy your site,” 30-Nov-2009. [Online]. Available:
http://www.nczonline.net/blog/2009/11/30/empty-image-src-can-destroy-your-site/.
[Accessed: 22-Jul-2015].

[122] M. Marquis, “srcN tests,” GitHub, 03-Oct-2013. [Online]. Available:
http://wilto.github.io/srcn-polyfills/. [Accessed: 29-Jul-2015].

[123] S. Jehl, M. Marquis, M. Engel, A. Jegtnes, S. Forst, and A. Farkas, “Picturefill,” 2015.
[Online]. Available: https://scottjehl.github.io/picturefill/. [Accessed: 29-Jul-2015].

[124] A. Deveria, “picture element browser support,” caniuse, 2015. [Online]. Available:
http://caniuse.com/picture. [Accessed: 29-Jul-2015].

[125] A. Deveria, “srcset attribute browser support,” caniuse, 2015. [Online]. Available:
http://caniuse.com/srcset. [Accessed: 29-Jul-2015].

[126] BrowserStack, “Cross Browser Testing Tool. 300+ Browsers, Mobile, Real IE.,” 2015.
[Online]. Available: https://www.browserstack.com/. [Accessed: 28-Jul-2015].

[127] D. Klein, “How to decide: Mobile websites vs. mobile apps,” Adobe Inspire Magazine, 2012.
[Online]. Available: http://www.adobe.com/inspire/2012/02/mobile-websites-vs-mobile-
apps.html. [Accessed: 08-Aug-2015].

[128] B. Lawson, “Notes on Adaptive Images (yet again!),” Bruce Lawson’s personal site, 08-
Dec-2011. [Online]. Available: http://www.brucelawson.co.uk/2011/notes-on-adaptive-
images-yet-again/. [Accessed: 08-Aug-2015].

[129] Y. Weiss, “Responsive image format,” Yoav Weiss’ Blog, 07-May-2012. [Online]. Available:
http://blog.yoav.ws/responsive_image_format/. [Accessed: 08-Aug-2015].

[130] T. Van Gorp, Design for Emotion. Waltham, MA: Morgan Kaufmann, 2012.

[131] C. Mills, “The CSS3 object-fit and object-position Properties,” Dev.Opera, 06-Jan-2011.
[Online]. Available: https://dev.opera.com/articles/css3-object-fit-object-position/.
[Accessed: 07-Aug-2015].

[132] J. Gube, “Responsive Full Background Image Using CSS,” Six Revisions, 30-Jun-2014.

112 References

[Online]. Available: http://sixrevisions.com/css/responsive-background-image/. [Accessed:
07-Aug-2015].

[133] J. Menz, “jquery-focuspoint plugin,” GitHub. [Online]. Available:
https://github.com/jonom/jquery-focuspoint. [Accessed: 31-Jul-2015].

[134] J. Salvat, “jquery-vegas plugin,” GitHub, 28-Apr-2015. [Online]. Available:
https://github.com/jaysalvat/vegas. [Accessed: 31-Jul-2015].

[135] A. Vanderzwan, “jquery-MaxImage plugin,” GitHub, 2015. [Online]. Available:
https://github.com/akv2/MaxImage. [Accessed: 31-Jul-2015].

[136] S. Robbin, “jquery-backstretch plugin,” GitHub, 14-Feb-2014. [Online]. Available:
https://github.com/srobbin/jquery-backstretch. [Accessed: 06-Aug-2015].

[137] S. Zach and D. Zach, “jquery-supersized plugin,” GitHub, 14-Aug-2014. [Online]. Available:
https://github.com/buildinternet/supersized. [Accessed: 07-Aug-2015].

[138] A. Deveria, “CSS object-fit browser support,” caniuse, 2015. [Online]. Available:
http://caniuse.com/object-fit. [Accessed: 31-Jul-2015].

[139] M. Chouinard and C. Gimmer, “Beautiful Free Stock Photos (CC0),” StockSnap.io, 2015.
[Online]. Available: https://stocksnap.io/. [Accessed: 06-Aug-2015].

[140] T. Lengemann, B. Jospeh, and I. Joseph, “Free stock photos,” Pexels. [Online]. Available:
http://www.pexels.com/. [Accessed: 06-Aug-2015].

[141] “Iconfinder - 575,000+ free and premium icons,” 2015. [Online]. Available:
https://www.iconfinder.com/. [Accessed: 06-Aug-2015].

[142] “Modernizr,” 2015. [Online]. Available: http://v3.modernizr.com/download/. [Accessed: 06-
Aug-2015].

[143] J. Tangelder, “Hammer.JS,” 2015. [Online]. Available: http://hammerjs.github.io/.
[Accessed: 06-Aug-2015].

[144] Google, “jQuery,” 2015. [Online]. Available: https://jquery.com/. [Accessed: 06-Aug-2015].

[145] D. Walsh, “Fullscreen API Implementation,” David Walsh’s Blog, 23-Dec-2013. [Online].
Available: http://davidwalsh.name/fullscreen. [Accessed: 07-Aug-2015].

[146] A. Deveria, “Fullscreen API browser support,” caniuse, 2015. [Online]. Available:
http://caniuse.com/fullscreen. [Accessed: 07-Aug-2015].

[147] S. Pieters, “Bug 135935 – srcset with w descriptor and sizes does not behave as expected,”
WebKit Bugzilla, 14-Aug-2014. [Online]. Available:
https://bugs.webkit.org/show_bug.cgi?id=135935. [Accessed: 08-Aug-2015].

[148] P. LePage, “Images in Markup — Web Fundamentals,” Google Developers, 30-Apr-2014.
[Online]. Available:
https://developers.google.com/web/fundamentals/media/images/images-in-markup?hl=en.
[Accessed: 09-Aug-2015].

	Abstract
	Acknowledgments
	Table of Contents
	Index of Abbreviations
	Index of Tables
	Index of Listings
	Index of Figures
	1 Introduction
	1.1 Motivation
	1.2 Research Approach
	1.3 Outline of Contents

	2 Background
	2.1 Evolution of the Web
	2.2 Web Technologies
	2.2.1 Hypertext Markup Language
	2.2.2 Cascading Style Sheets
	2.2.3 JavaScript
	2.2.4 Hypertext Transfer Protocol
	2.2.5 Browsers

	2.3 Diversity of Devices
	2.3.1 Desktops and Laptops
	2.3.2 Mobile Phones
	2.3.3 Tablets
	2.3.4 TVs
	2.3.5 Others

	2.4 Responsive Web
	2.4.1 Evolution of Design
	2.4.2 Responsive Web Design
	2.4.3 Meaning of Responsiveness

	2.5 Images on Websites

	3 Responsive Images
	3.1 Introduction
	Motivation

	3.2 Technical Foundations
	3.2.1 Server-Side Solutions
	3.2.2 Client-Side Solutions

	3.3 Evaluation Framework
	3.3.1 Selection of Solutions
	3.3.2 Evaluation Criteria
	Functional Requirements: Use Cases
	Non-Functional Requirements
	System Prerequisites

	3.3.3 Resulting Evaluation Framework

	3.4 Evaluation of Solutions
	3.4.1 Overview
	3.4.2 Solution 1: User Agent Detection
	Implementation
	Evaluation

	3.4.3 Solution 2: Cookies
	Implementation
	Evaluation

	3.4.4 Solution 3: HTTP Client Hints
	Implementation
	Evaluation

	3.4.5 Solution 4: CSS Background Images
	Implementation
	Evaluation

	3.4.6 Solution 5: JavaScript
	Implementation
	Evaluation

	3.4.7 Solution 6: Native HTML5
	Implementation
	Evaluation

	3.5 Evaluation Results
	3.5.1 Overview
	3.5.2 Discussion

	4 Proof of Concept: Travel Website using Responsive Fullscreen Images
	4.1 Introduction
	4.2 Fullscreen Images
	4.2.1 Motivation
	4.2.2 Issues
	4.2.3 Approaches
	CSS Background Images
	JS-based Approach
	CSS object-fit Property

	4.3 Implementation of a Prototype
	4.3.1 Overview
	4.3.2 File Structure
	4.3.3 Responsive Fullscreen Images
	4.3.4 Responsive User Interface
	4.3.5 Fallbacks and Workarounds

	4.4 Discussion

	5 Conclusion
	References

