
Master Thesis

Generalizing BlockSci to Cross-Chain
Analyses of Forked Ledgers

submitted to the Faculty of Mathematics, Computer
Science and Physics of the University of Innsbruck

in partial fulfillment of the requirements
for the degree of Master of Science

Martin Plattner, BSc. BSc. (1167741)
martin@mplattner.at

Innsbruck, 15 June 2020

Supervisors: Univ.-Prof. Dr. Rainer Böhme
Michael Fröwis, MSc.

mailto:martin@mplattner.at

Abstract

Public blockchains such as Bitcoin provide large amounts of financial transaction data.
Analyzing this data is of significant interest for scientific research and commercial
applications, but also for law enforcement and regulation. Cross-chain analyses enhance
established single-chain analyses by including data of multiple chains. Forked chains are
particularly suited for cross-chain analyses due to their shared history, which causes direct
links between identities across chains. This allows to extract novel insights, such as how
user behavior differs across forked chains and how it affects privacy. We identified two
main challenges when performing cross-chain analyses of forked chains. First, it is difficult
for users to combine the data of multiple chains. We are not aware of a publicly available
tool that provides means to efficiently utilize the data relationships between forked ledgers.
Second, every additional chain significantly increases the memory footprint and thereby
the cost of the analysis. We improve the high-performance blockchain analysis platform
BlockSci to overcome these challenges. We add a new multi-chain mode to BlockSci
that allows efficient and user-friendly cross-chain analyses of forked chains. This mode
has two main features. First, it deduplicates addresses across chains, i.e., addresses are
compatible between chains. This is a core requirement of cross-chain analyses and allows
to study the activity of the same addresses on multiple chains. Second, the new mode
shares common data across chains in memory. This significantly reduces the memory
requirement to analyze forked chains. In an extensive evaluation we successfully verify
the correctness, performance, and backwards compatibility of the created extension. We
use the capabilities of the new multi-chain mode to implement a novel address clustering
technique that uses data of multiple chains: cross-chain address clustering. We enhance a
Bitcoin clustering with data of Bitcoin Cash and identify over 570,000 additional cluster
merges as of Dec 2019. The analysis indicates that certain user behavior, e.g., cash-outs,
can compromise privacy across chains. Overall, our extension1 contributes a robust and
extensible foundation for cross-chain analyses to BlockSci.

1The code is available on GitHub:
https://github.com/mplattner/BlockSci/tree/a1784376ccb308015c2819dc081a271703b8c5fc

ii

https://github.com/mplattner/BlockSci/tree/a1784376ccb308015c2819dc081a271703b8c5fc

Acknowledgments

Many people supported me during the creation of this thesis. A huge thank you goes to
my supervisors Rainer Böhme and Michael Fröwis. Rainer gave me the opportunity to
work in a very motivated and highly skilled team. I learned a lot during this time and
I am very grateful for this valuable experience. Michael always had good advice that
got me back on track when I was stuck. He also spend a large amount of time giving
me feedback on the write-up. I also want to thank the rest of the “Information Security
and Privacy Lab” and “Dungeon” crew at the University of Innsbruck. They made the
time at the office both rewarding and fun. Jakob always made time to help me with his
excellent programming and debugging skills. Patrik and Alex also regularly provided
helpful feedback.

A big thank you also goes to the BlockSci team at Princeton University, especially Malte
Möser and Arvind Narayanan. As a BlockSci developer, Malte gave me very valuable
feedback and supported me during multiple seemingly endless debugging sessions. He
also did the heavy lifting for our collaboration on the BlockSci paper that we submitted
to the 29th USENIX Security Symposium 2020. Arvind gives me the opportunity to
continue my work on BlockSci in the future.
I also want to thank my friends for many helpful discussions, especially Markus

Amtmann. Our regular conversations over a “Mango Pago” motivated me when work
seemed overwhelming. A big thank you also goes to my family. They have emotionally
and financially supported me not only during my work on this thesis, but also all-along
my studies in Vienna, Stockholm, and Innsbruck. Finally, many thanks go to my lovely
girlfriend Lisa for her incredible support. She always encouraged me and had a lot of
patience while I was busy working on this thesis.

This work was supported by two publicly funded projects:

1. TITANIUM: Tools for the Investigation of Transactions in Underground Markets.1
(European Union Horizon 2020 grant agreement no. 740558)

2. VIRTCRIME: Forensic Methods and Solutions for the Analysis of Criminal Trans-
actions in Post-Bitcoin Cryptocurrencies.2
(Austrian Research Promotion Agency FFG)

1TITANIUM project website: https://www.titanium-project.eu/
2VIRTCRIME project website: https://virtcrime-project.info/

iii

https://www.titanium-project.eu/
https://virtcrime-project.info/

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Approach . 2
1.3 Outline of Contents . 3

2 Background 4
2.1 Distributed Ledger Protocols . 4

2.1.1 Fundamentals . 4
2.1.2 Transaction Model . 8
2.1.3 Forks . 10
2.1.4 Bitcoin . 14

2.2 Blockchain Data Analysis . 19
2.2.1 Address Clustering . 19
2.2.2 Cross-Chain Analyses . 20
2.2.3 Existing Tools . 21

2.3 BlockSci: High-Performance Blockchain Analysis Tool 23
2.3.1 Config File . 24
2.3.2 Data Layout . 25
2.3.3 Parser . 28
2.3.4 Analysis Library . 31

3 Generalizing BlockSci to Forked Ledgers 34
3.1 Requirements . 34

3.1.1 Scope & Contribution . 34
3.1.2 Functional Requirements . 35
3.1.3 Non-Functional Requirements . 35

3.2 Required Changes . 36
3.2.1 Config File . 37
3.2.2 Data Layout . 38
3.2.3 Parser . 42
3.2.4 Analysis Library . 46

3.3 Usage . 48
3.4 Evaluation . 50

3.4.1 Correctness . 50
3.4.2 Runtime Performance . 52
3.4.3 Backwards Compatibility . 56

3.5 Discussion . 57

iv

4 Application: Cross-Chain Address Clustering 60
4.1 Introduction . 60
4.2 Implementation . 61
4.3 Usage . 63
4.4 Analysis: BTC-BCH Cross-Chain Clustering 64

4.4.1 Preliminaries . 64
4.4.2 Overview . 66
4.4.3 Time advantage . 67
4.4.4 Privacy Implications . 69

4.5 Discussion . 70

5 Conclusion 71

List of Abbreviations 72

List of Figures 73

List of Listings 74

List of Tables 75

References 76

v

1 Introduction

1.1 Motivation
Distributed ledger protocols and the underlying blockchain technology have gained
popularity within the last years. This made the analysis of blockchains relevant for many
fields, e.g., computer science, economics, and law enforcement. Analyses are facilitated
by the fact that the data of open blockchains is publicly available. For example, the
popular Bitcoin blockchain provides over 300 GB of financial transactions. Previous
research often covered the analysis of only one individual blockchain at a time. However,
such single-chain analyses can be extended to a cross-chain analysis by including data of
multiple chains. Cross-chain analyses combine the data of multiple chains to enhance
the dataset and extract novel insights. From an analysis perspective, forked chains are
particularly suited for cross-chain analyses due to their shared history.
A fork describes the creation of a new blockchain, commonly caused by a backwards

incompatible change to the protocol of chain A. This results in an additional chain B
that branches off chain A at the block height of the fork. The newly created forked chain
builds upon the entire transaction history of the parent chain. A popular example of a
fork is Bitcoin Cash (BCH), which forked from Bitcoin (BTC) at block height 478,558, i.e.,
the first 478,558 blocks of BTC and BCH are identical. As a consequence, all addresses
that held coins on the parent chain before the fork inherently hold the same amount of
coins on the forked chain – locked by the same keys and thus, on the same addresses.
The result is a direct link between the digital identities of users across the parent chain
and its forked chain. These links can be utilized in cross-chain analyses by including the
additional data that forks provide. Such analyses allow to study many open questions,
such as how user behavior differs among parent and forked chain, and how it affects
privacy. [1]
Blockchain analyses – whether single- or cross-chain – often require to process large

parts of the blockchain. This poses several challenges to the analysis platform. From
a software perspective, tools that can efficiently handle the graph-structured data of
blockchains are needed. Graph databases, like Neo4j, are frequently used for blockchain
data analysis [2, 3]. However, such general-purpose databases often do not provide
sufficient performance. Using distributed databases is not a viable option as graph data
is hard to partition effectively. Instead, specialized high-performance tools are needed.
From a hardware perspective, large amounts of memory are needed for blockchain analysis.
Keeping most of the relevant data in memory is crucial to achieve reasonable performance.
Most cloud providers offer memory-optimized instances with hundreds of gigabytes of
RAM, some large instances even come with several terabytes. However, memory is
expensive and should be used efficiently to reduce costs. This poses a challenge for

1

our goal to perform cross-chain analyses across forks. After all, every additional fork
significantly increases the dataset and thus the required amount of memory.
These challenges indicate that specialized tools are needed to efficiently analyze

blockchain data. One such domain-specific blockchain analysis platform is the popular
tool BlockSci by Kalodner et al. [4]. BlockSci addresses and improves upon several weak
points of existing analysis tools. It is very fast due to its highly optimized architecture.
For example, it can iterate all 500 million transactions of the Bitcoin blockchain in a few
seconds. This level of performance is achieved by transforming the raw blockchain data
into a custom data layout that is optimized for analysis. A custom in-memory database
is used to load the optimized data layout into memory. BlockSci provides a user-friendly
Python interface and comes with several useful analysis modules, e.g., to cluster addresses
by real-world entities. However, BlockSci’s support for cross-chain analyses of forked
ledgers is limited. It can currently only load and process the parent and its forked chain
individually. Addresses are not deduplicated across chains, which is a core requirement
to utilize links across chains in a cross-chain analysis. Although the user could combine
and link the data of both1 chains manually in the analysis script, this is a complex and
cumbersome task. The user would experience insufficient performance due to missing
cross-chain indices. Loading forked chains also results in a large memory overhead as the
shared history of both chains is kept in memory twice. Overall, BlockSci only provides
very limited support for cross-chain analyses of forked chains.

1.2 Research Approach
Our long-term goal is to improve BlockSci’s support for cross-chain analyses. In this
work we aim to create a robust foundation for cross-chain analyses that can be built
upon in the future. We limit the scope to analyses across forked chains, as they provide
very valuable data due to the links between chains.

We add a new multi-chain mode to BlockSci that allows to load and analyze a chain
together with its fork(s). Our focus is on providing high performance, basic means to
utilize the links between chains, and a user-friendly interface. A major contribution is the
extension of BlockSci’s address deduplication to multiple chains. It allows us to provide
users with address representations that are compatible across chains, i.e., Address 1
corresponds to the same address on all chains. This unique feature enables many novel
cross-chain analyses, such as cross-chain address clustering. We change BlockSci’s data
layout so that it efficiently supports forked chains. The new layout facilitates sharing
data that is common to chains in memory, i.e., the identical blocks of forked chains. This
reduces the aforementioned memory overhead when analyzing forks. The user interface
is backwards compatible. It provides users with the familiar single-chain experience
known from the existing BlockSci version. In this work we do not extend the API with
cross-chain data retrieval methods. However, the new multi-chain mode is designed
with common cross-chain queries in mind and we plan to add a cross-chain API in the
future. We evaluate the resulting extension for correctness, performance, and backwards

1When we use “both chains” in this work, we refer to a parent chain and its fork, e.g., BTC and BCH.

2

compatibility. Correctness is evaluated by comparing the returned data of the extended
and non-extended versions. Performance is evaluated by benchmarking eight common
queries with both versions.
We use the new multi-chain mode to implement a novel clustering technique: cross-

chain address clustering. Address clustering uses heuristics to cluster addresses that
are likely controlled by the same real-world entity [5]. Address clustering is crucial for
law enforcement and blockchain forensics, but is also useful for many other types of
analyses. Cross-chain address clustering enhances the established single-chain technique
by including data from multiple chains. This allows to create an improved clustering, i.e.,
with more linked addresses than by using single-chain data alone. Forked chains provide
a powerful clustering data source due to the links between identities across chains. Users
may be privacy-conscious on the parent chain but perform privacy-harming actions on
the forked chain, or vice versa. We use the enhanced clustering module to analyze a
cross-chain clustering of Bitcoin and Bitcoin Cash.

1.3 Outline of Contents
Section 2 covers relevant preliminaries: the fundamentals of distributed ledger protocols,
the basics of blockchain data analysis, and the relevant parts of BlockSci. Section 3 is the
main part of this work and covers the implementation of the new multi-chain mode. We
first gather requirements and then describe all required changes in detail. We end with
an evaluation of the extension and a discussion of limitations and future work. Section 4
uses the new multi-chain mode to implement a novel address clustering technique that
works across chains. We analyze a cross-chain clustering of Bitcoin and Bitcoin Cash.
Section 5 concludes this work with a discussion and an outlook.

Contribution Statement
The developers of BlockSci decided to incorporate the new multi-chain mode into a future
release of BlockSci. They also invited me, Martin Plattner, to contribute my work to
their paper “BlockSci: Design and applications of a blockchain analysis platform” [6].
The paper was joint work with Malte Möser2, Harry Kalodner2, Kevin Lee2, Arvind
Narayanan2, Steven Goldfeder3, and Alishah Chator4. I, Martin Plattner, implemented
the new multi-chain mode and conducted the cross-chain analysis for Section 3.2 (“Cashing
out on forks hurts privacy”) of the paper. The write-up regarding the multi-chain mode,
especially Section 3.2, was joint work. The paper has been submitted to the 29th USENIX
Security Symposium 2020. At the time of writing, the status of acceptance is “minor
revision with shepherd”.

2Princeton University
3Cornell Tech
4Johns Hopkins University

3

2 Background

In this section we cover preliminaries that are required to understand the rest of this
work. We start with an introduction to distributed ledger protocols in Section 2.1. In
Section 2.2 we cover blockchain data analysis, related work, and existing (but mostly
insufficient) alternatives to BlockSci. We end with an in-depth coverage of BlockSci’s
current architecture in Section 2.3. We assume that the reader has a background in
computer science. Readers that are experienced with distributed ledger protocols may
safely skip large parts of Sections 2.1 and 2.2.

2.1 Distributed Ledger Protocols
In this section we systematically cover the preliminaries of DLPs that are relevant for
this work. We follow a bottom-up approach and start with the fundamentals of DLPs
in Section 2.1.1. We outline the key challenges and required changes to transition from
traditional ledgers to decentralized distributed ledgers. Many distributed ledger protocols
store their data in a blockchain, which we cover next. Note that while we approach
DLPs is a generic way, we aim to eventually converge to Bitcoin, as it is the main DLP
that BlockSci supports. Thus, bear in mind that some details given in Section 2.1.1
are only valid for Bitcoin and similar DLPs. Blockchains commonly contain financial
transactions according to a format that is defined in a transaction model, which we
cover in Section 2.1.2. We focus on the Unspent Transaction Output (UTXO) model of
Bitcoin. In Section 2.1.3 we cover forks, which denote blockchains that split into multiple
branches. We outline different types of forks, discuss their persistency, and highlight
relevant implications. We end with an in-depth coverage of Bitcoin, its data format, its
scripting language, common address types, and relevant Bitcoin forks in Section 2.1.4.

2.1.1 Fundamentals
Traditional Ledgers

A traditional ledger is a bookkeeping tool to record a chronological sequence of events
in a consistent and transparent manner. Ledgers are often used to record financial
transactions1, e.g., bank transfers. A typical transaction could be: “Transaction #5
(on 2019-05-23 at 10:40pm): Alice sends Bob USD 4.99”. Ledgers require integrity and
a high level of transparency to allow traceability and auditability. The following two
characteristics support this requirement by limiting the means of making changes to the
ledger. First, a ledger is usually managed by one central authority, e.g., the bank. This

1Throughout this work we assume ledgers that are used to store financial transactions.

4

ensures that only one clearly defined party is in control and thus, responsible. The central
authority can deploy access control systems so that only authenticated and authorized
entities can access the ledger. Second, ledgers are often append-only, i.e., new entries
can be added but existing entries are never modified. While having a central authority
simplifies the administration of the ledger, it also requires that all participants trust
the central authority. For example, all customers of a bank must trust the bank that
it handles the ledger with due diligence to avoid incidents like a loss of funds. This
trust requirement is not desired in some use cases. For example, multiple competing
companies may want to maintain a ledger for their business sector, but can not agree on
the central authority because of trust issues. Another example are people who tend to
distrust centralized institutions, e.g., national banks, and prefer a decentralized system
instead. These and other motifs led to a large research effort to make centralized ledgers
decentralized. Bitcoin was the first system that solved this issue for open systems, i.e.,
systems where anyone can join and the authorities are not predefined. Since its release
in 2009 such decentralized payment systems are commonly referred to as Distributed
Ledger Protocols (DLPs).

Distributed Ledgers

DLPs improve traditional ledgers by removing the requirement to trust a central authority.
There is no community-wide accepted definition of DLPs. We describe DLPs in the sense
of Bitcoin in the following. Such DLPs do not require a central authority. Instead, an
arbitrary number of untrusted parties can “jointly” manage and validate the distributed
ledger. The participants of the DLP – also called nodes – create a peer-to-peer network
to communicate with each other. The network is open and permission-less: nodes can
join, leave, and rejoin the network at any time without asking for permission. No strong
identities are tied to individual nodes. Thus, every party can create an arbitrary number
of identities. This open organization implies that nodes do not necessarily trust each
other – they might not even know each other. However, it is still required that all nodes
agree on a valid and consistent state of the ledger. This includes that all transactions
of the ledger are in the correct order and valid. Transactions are invalid if they try to
transfer coins that the sender does not have, or if they try to spend already spent coins,
known as double-spending. This high level of openness is an essential property of DLPs.
All solutions prior to Bitcoin assumed a less open system than described above. DLPs try
to solve this issue: reaching (eventual) consensus on an open network with weak-identity
nodes that do not trust each other.

Consensus in an Open Network

Reaching consensus in an open network requires a mechanism that ensures that all nodes
agree on a consistent and valid state – a so-called distributed consensus protocol. We
first outline a rather abstract model of distributed consensus protocols: imagine a paged
ledger, e.g., a physical notebook that is used to record transactions chronologically2.

2Later on, we replace the notebook with a blockchain where every block represents a page.

5

While the central authority is clearly defined for traditional ledgers, it is not so trivial for
distributed ledgers. Who should be the authority that is allowed to add new transactions
to the ledger? Who decides which transactions are valid and therewith contributes to
the current state of the ledger? All participating nodes represent possible authority
candidates and all want to occupy this powerful role. DLPs use a distributed consensus
protocol to solve the issue of selecting a leader among all participants. In practice, many
protocols aim to select a new leader “randomly”, an approach known as random leader
selection. This allows that power is distributed among all validating nodes, which are
also called miners. A widely used random leader selection mechanism is proof of work
(PoW). Another common mechanism is proof of stake (PoS). However, we only cover
PoW in the following3 as it is sufficient to understand the rest of this work. PoW requires
miners to solve a computationally hard puzzle in order to propose a new page for the
ledger. A page contains a set of transactions that the miner can select freely out of the
transactions that were recently broadcasted on the network. As a consequence, adding a
page to the ledger becomes expensive as it is tied to a real-world resource: electricity,
mining hardware etc. Most current implementations of PoW require the miner to find a
cryptographic hash value that is below a certain threshold. Miners have no other option
than to guess (=brute force) the correct hash. They do so by repeatedly hashing the page
to be validated with an appended nonce that is changed for every attempt. One might
wonder why miners participate in the validation process. After all, they have to pay for
the mining hardware and the electricity to operate it. DLPs have an incentive model that
tries to ensure that miners validate and behave according to the protocol. As soon as a
miner finds a solution – the nonce for the proposed page – they immediately broadcast it
to the network. While the miner needed a lot of computational power to find the correct
hash, other nodes can quickly verify if the solution is correct. If the other nodes accept
the page as valid, they add it to their version of the ledger and the miner gets a reward.
The possibility to reward nodes for fair behavior is an essential feature of DLPs. The
fact that DLPs have an intrinsic unit of value – the unit of the ledger – facilitates paying
rewards to users. DLPs that mainly use the unit to implement a virtual currency are
referred to as cryptocurrency. Rewards that are given to miners represent the monetary
supply of a cryptocurrency, similar to a central bank that prints money. As soon as the
other miners receive the new valid page, they know that they lost the current round
of the puzzle. A new round starts immediately: all miners stop looking for a solution
to their current individual candidate page, assemble a new page, and start the solving
process again. You can think of this repeated process as a miniature lottery where the
prize is the reward and the permission to add a page to the ledger. More formally, this
process is also called “probabilistic block race”, as the likelihood that a miner finds the
solutions is proportional to her resources, e.g., the hash rate. The difficulty of the PoW
puzzle can be adjusted by changing the threshold that the hash is compared to. Most
DLPs do globally adjust the difficulty so that new pages are added in regular intervals
on average. For example, the intended block time of Bitcoin is 10 minutes, meaning that
a new round of the miniature lottery starts every 10 minutes on average. Besides the

3Note that we cover PoW as it is implemented in Bitcoin.

6

benefits for the security of the DLP, this regular process results in a predictable supply
of new coins. The outlined protocol provides a probabilistic selection of nodes that are
allowed to propose a new page for the ledger with an integrated self-enforcing rate limit.
In order to further discuss DLPs and their security we need to discuss a fundamental
data structure first: the blockchain.

Blockchain

Most DLPs store the data of the ledger in a blockchain data structure4, as shown in
Figure 2.1. The terms blockchain and blockchain system are commonly used as synonyms
for DLPs. A blockchain is an authenticated data structure that consists of a ordered set
of blocks. We can think of a block as a page of the physical notebook-based ledger in
the previous section. The number of the block is also called block height, e.g., the 5th

block has block height 5. Every block contains a block header with metadata, and a
ordered set of transactions. The concrete data structure of blocks and transactions are
implementation-specific for individual DLPs. Bitcoin’s data structures are outlined in
Section 2.1.4. The first block of a blockchain is called genesis block and is hardcoded in the
source code of the DLP implementation. Each additional block contains a cryptographic
hash of its previous block in the block header. This hash represents the solution that
was found by the miner using the PoW mechanism. The result is a cryptographically
linked (“chained”) list of blocks – hence the name blockchain.

Figure 2.1: A blockchain represents a ordered set of cryptographically linked blocks.
Genesis Block (0)

-

Metadata

Transactions

Block 1

Prev. solution (h0)

Metadata

Transactions

Solution: h0 Solution: h1

Block 2

Prev. solution (h1)

Metadata

Transactions

Solution: h2

Block 3

Prev. solution (h2)

Metadata

Transactions

Solution: h3

The purpose of this authenticated list is immutability. If an existing block in the
blockchain is modified, its hash changes. Thus, the link from the next block to the
changed block becomes invalid. The result is that changing an existing block invalidates
the links among all blocks that come after it. However, it is only the combination of the
blockchain data structure with PoW that provides actual security. Recall that mining
a block requires a substantial amount of computational work. In order to rewrite the
history of a blockchain an attacker has to mine upon an existing block and provide a
valid set of blocks so that his blockchain is higher than the current public version of the
chain. It has to be higher because most DLPs resolve such conflicts by always selecting
the longest available valid branch of the chain. The longest chain equals to the chain that

4An alternative data structure for DLPs are directed acyclic graphs, which are for example used by a
DLP called IOTA. However, non-blockchain-based DLPs are not within the scope of this work.

7

has most work put in it. As all blocks build on each other, the amount of work put into
the blockchain accumulates. This makes it increasingly harder and more expensive for
an attacker to provide a valid set of alternative blocks and thus, increasingly unlikely to
be successful. Therefore it is recommended by most DLPs to wait for several new blocks
before considering a recorded transaction as confirmed. Every new block represents an
additional confirmation of all previous blocks. For Bitcoin it is common to wait for six
confirmations, which on average takes 60 minutes.5 After enough confirmations the state
of a DLP can practically be considered immutable and consistent, with the limitation
that both properties are only achieved eventually and not immediately.

2.1.2 Transaction Model
A common use-case for traditional ledgers is tracking financial transactions and the
balance of accounts over time. This is also true for DLPs, which have to track the
transactions and balances of its participants. DLPs commonly use digital signatures
based on public-key cryptography to manage identities and ownership. Every node can
have one or more key pairs, consisting of a public and a private key. Generating new
keys is a cheap operation and a single key pair can also be used to derive an arbitrary
number of new key pairs from it. Thus, every user of the system can participate with an
arbitrary number of identities. The public key is used to receive coins, and the private
key is used to spend previously received coins. Most DLPs transform the public key
to a standardized address format before it is used to receive coins. Addresses are more
user-friendly than using public keys directly as they include a checksum and exclude
ambiguous characters to avoid typing errors. Bitcoin has several address types6 which
are outlined in Section 2.1.4.
The specifics of transactions are defined in a transaction model. Two dominant

transaction models are used in DLP systems: the Unspent Transaction Output (UTXO)
model, and the account model. The account model is more intuitive as it is similar to the
traditional banking system where a user has just one or a few accounts. It is primarily
used by DLPs that support smart contracts, e.g., Ethereum (ETH). As BlockSci only
supports UTXO-based DLPs, we only cover the UTXO model in the following. The
UTXO model is more complex than the account model, but better protects the privacy
of the participants. It is used by many DLPs, including Bitcoin and its derivatives, e.g.,
Bitcoin Cash, Dash, and Litecoin. Transactions transfer value between users. They
consist of inputs and outputs. A common analogy is that transaction inputs specify where
the coins of the transaction come from, and of the transaction outputs specify where the
coins go to. Outputs are locked by a spending condition that is part of the output and
defined by the sender. A common spending condition is “pay to whoever can provide a

5The number of required confirmations depends on the block time of the DLP and the value at risk,
e.g., the amount of the transaction. A transaction for a coffee may require less confirmations than for
a Lamborghini.

6For example, 1BvBMSEYstWetqTFn5Au4m4GFg7xJaNVN2 is a Pay-to-Public-Key-Hash (P2PKH)
address.

8

valid signature for the attached public key”7. Inputs spend previously created outputs
by referencing and unlocking them. Unlocking means to fulfill the spending condition,
e.g., providing a valid signature for the public key that is attached in the referenced
output. The spending condition and its fulfillment are provided via scripts in the output
respectively input. Most DLPs use a custom scripting language for this purpose. For
example, Bitcoin uses a language called Script, which we cover in Section 2.1.4. The
consensus rules enforce that every output can be referenced only once by an input. This
prevents that outputs are spent multiple times, known as double-spending. An output is
indivisible, i.e., the entire value of the output has to be spent.
There is a special type of transaction that does not have any inputs – the coinbase

transaction. The coinbase transaction is created by the miner of the block. It pays the
miner of the block the reward and thus, does not need any inputs. Instead, the units are
coming from nowhere, e.g., “out of thin air”. In Bitcoin, the coinbase transaction is the
first transaction of each block.
Figure 2.2 shows how the UTXO model works using three sample transactions. We

assume User A is a miner and Users B and C are regular users. Transaction 1 is a
coinbase transaction created by User A where she pays (=locks) the mining reward of
50 btc to herself. The input of Transaction 2 unlocks the output of Transaction 1 and
sends (=locks) 2 outputs with a total value of 8 to User B. Note that the entire output of
Transaction 1 is spent, and the rest (42 btc) is sent back to User A in a “change output”.
In Transaction 3, User B unlocks the received outputs and creates one output locked to
User C. The right side shows the number of UTXOs and the accumulated balance for
each user (after applying the transaction on the left).

7This condition is referred to as Pay-to-Public-Key (P2PK).

9

Figure 2.2: A sample flow of coins using the UTXO model.

no inputs

units are created "out of thin air"

User A sends 5 btc

to User B, and 3

btc to User C

User A mines 50btc

Action Transactions (TX)

User B sends 8 btc

to User C

Balances

t = 1

t = 0

t = 2

Transaction 1 (Coinbase transaction): created by User A

Transaction 2: created by User A

Transaction 3: created by User B

O 1: 50 btc locked to pubkey of User A

I 1: references and unlocks O 1 of TX 1 O 1: 5 btc locked to pubkey1 of User B

O 2: 3 btc locked to pubkey2 of User B

O 3: 42 btc locked to pubkey of User A (change)

I 1: references and unlocks O 1 of TX 2

I 2: references and unlocks O 2 of TX 2

O 1: 8 btc locked to pubkey of User C

User Balance UTXOs

A 50 1

B 0 0

C 0 0

User Balance UTXOs

A 42 1

B 8 2

C 0 0

User Balance UTXOs

A 42 1

B 0 0

C 8 1

Transaction Inputs (I) Transaction Outputs (O)

2.1.3 Forks
Under normal conditions a blockchain grows linearly as miners add block after block to
the end of the chain. This linearity is broken when multiple blocks are added to the last
block, as shown in Figure 2.3. In this case we speak of a fork (“the blockchain forked”),
or a chain split.

Figure 2.3: Illustration of a fork.

Block 1 Block 2 Block 3 Block 4

Block 4'

Block n

Block n'

shared history

fork height = 3

Parent chain

with n blocks

Forked chain

with n' blocks

common

anchestor

The concept of forks is essential for this work. Forks occur if miners propose multiple
new valid blocks that are mined upon the same common ancestor block. Depending

10

on the type of the fork this may be desired, e.g., to update the consensus rules of the
DLP; or undesired, e.g., when the fork is caused by inconsistencies due to network delays.
In any case the result are multiple branches of the blockchain. Forks share a common
history with the parent chain. This is important to understand: if a blockchain splits
into two branches, e.g., at block height 3, both branches share the identical history up
to block 3, as illustrated in Figure 2.3. The shared history makes forks interesting for
cross-chain analyses that combine data of parent and forked chain. We can differentiate
between several types of forks. However, there is no community-accepted and widely used
terminology regarding forks. A recent working paper addresses this issue and provides
a classification framework for forks [7]. In the following we cover two common types of
forks.

Natural Forks

The decentralized nature of a DLP can cause inconsistencies in the current state of the
ledger among the participating nodes. The state on nodes may vary due to delays or
packet loss on the peer-to-peer network. This can cause temporary branches of blocks
that we call natural forks. Natural forks are also referred to as “accidental fork” [8, p.
xxv] and “unintentional process-based fork” [7] in literature. A natural fork commonly
occurs when in one round two miners find the solution for their candidate block at
roughly the same time. The result is that both new blocks build upon the same parent
block. This is a problem because both blocks might contain conflicting transactions, e.g.,
double-spending of the same coins. The consensus protocol has to arbitrate such conflicts
to ensure a single and consistent state of the ledger. Most DLPs resolve natural forks
automatically, e.g., by implementing a rule that nodes always accept the longest current
branch as the valid chain. As soon as a miner proposes another new block mined upon
one of the two branches, one branch becomes longer and is accepted as the valid chain.
As a consequence, the other branch and its blocks are wiped out.

Protocol Update Forks: Soft and Hard Forks

Another scenario where forks commonly occur is when the consensus protocol of a DLP
is updated. This includes changes to the rules that determine if a block or transaction is
valid. In [7] such forks are called “deliberate protocol-based fork”. Two update types are
commonly seen in practice: soft forks and hard forks. Soft forks are often the preferred
option as they do not require legacy nodes to update in order to avoid a permanent chain
split. The nature of the changes to the existing rules dictates whether a soft fork or a
hard fork is required.

• Soft forks update the rules in a way that makes them more restrictive, e.g.,
changing the maximum block size from 2 MB to 1 MB. While the legacy software
of soft forks is forward-compatible8, i.e., legacy nodes will accept blocks created by

8Forward compatibility describes that an old version can process inputs intended for a newer version.

11

updated miners, the updated software is not backwards-compatible9. Formally the
new set of valid blocks is a subset of the legacy set of valid blocks [7]. Thus, new
blocks mined according to the updated rules are also accepted as valid by legacy
nodes. This allows to update a DLP without requiring all nodes to update their
software (immediately). Soft forks are regularly used in practice to update the
Bitcoin system, e.g., in BIP1610 that added the Pay-to-Script-Hash (P2SH) address
type11.

• Hard forks update the rules in a way that makes them less restrictive, e.g.,
changing the maximum block size from 2 MB to 4 MB. While the updated software
of hard forks is backwards-compatible, i.e., updated nodes will accept blocks created
by legacy miners, the legacy software is not forward-compatible. Formally the new
set of valid blocks is a superset of the legacy set of valid blocks [7]. Thus, new
blocks mined according to the updated rules may be seen as invalid by legacy nodes.
A hard fork is what people commonly refer to by the term “fork”. One prominent
example of a hard fork is Bitcoin Cash, which split from the original Bitcoin chain
in August 2017 over disagreement about the maximum size of blocks [9].

Persistence of Forks

An important concept for this work is the persistence of forks. Forks can be sustained
permanently or temporary. Our scope are permanent forks, as they provide data that
is permanently persisted in the blockchain. In contrast, in temporary forks one of the
competing branches wins and the other branch is removed, i.e., the blocks and transactions
are wiped out. While temporary forks could be analyzed as well, their short lifetime and
thus small size does not require the extension we are implementing in Section 3.

Natural forks are resolved by the consensus protocol with the rule that all nodes accept
the longest current branch as valid. Thus, natural forks are temporary and not within the
scope of this work. For soft forks and hard forks it is somewhat more complex. The aim
of both types is commonly that the updated rules become the new default, i.e., the new
branch should ultimately replace the old branch. This is to avoid a permanent chain split,
which can severely damage the reputation and value of the DLP, as it confuses users,
causes uncertainty, and may even cause security issues. Avoiding a chain split requires
the support of miners and users – miners need to allocate their hash rate, and users need
to update their software. However, in practice the changes that forks introduce are often
highly controversial, leading to a competition of both the legacy and the updated version.
In theory the outcome mainly depends on the allocation of consensus-relevant resources,
i.e., the hash rate, as shown in Table 2.1 [7]. We denote the hash rate supporting the old
respective new rules with rold and rnew. For a soft fork to replace the legacy branch, a
majority of the hash rate needs to be allocated to mining according to the new rules,
i.e, rnew > rold. Then the branch supported by updated miners grows quicker and may

9Backward compatibility describes that a new version can process inputs intended for an older version.
10Bitcoin Improvement Proposal (BIP)
11Bitcoin’s address types are covered in Section 2.1.4.

12

wipe out the legacy branch. In this case there is no permanent chain split and the soft
fork was successful. On the other hand, if a majority of the hash rate sticks to the legacy
rules, i.e., rnew < rold, a permanent chain split may be the result. For hard forks it is
reversed, as shown in Table 2.1.

Table 2.1: Persistency of soft and hard forks based on the allocation of consensus-relevant
resources rnew and rold, i.e., the hash rate. White blocks are mined according
to the old rules, and blue blocks according to the new rules. [7]

soft fork hard fork

rnew > rold

old branch fails, soft fork wins both win, permanent chain split

rnew < rold

both win, permanent chain split old branch wins, hard fork fails

Note that this is a rather formal classification that assumes all nodes receive and
consider both old and new blocks. Only then we can observe the described competition
of the old and the new branch. In practice, this is often not the case and thus, the
persistence is also dependent on the specific implementation. For example, the Bitcoin
Cash specification required that the first forked block must be larger than 1 MB so
that the post-fork Bitcoin chain (with blocks smaller than 1 MB) is invalid and thus,
a wipe-out of the fork is impossible [10, Req. 3]. That said, almost all hard forks are
permanent in practice. In the following we concentrate on permanent forks only.

Implications of Permanent Forks

The fact that forked ledgers share a common history has some very relevant implications.
Recall that all pre-fork blocks are identical. First, this implies that both chains share all
pre-fork addresses. Second, and more importantly, all outputs that are unspent at the
fork height can be spent in both chains, as illustrated Figure 2.4. For the users this means
that all their coins on the parent chain are “duplicated” on the forked chain. These
duplicated coins in the form of UTXO can be spent on both the parent and the forked
chain. The UTXOs are inherently locked by the same addresses on both chains. Thus,
forked ledgers have direct links between identities across chains. This makes permanent
forks a powerful data source for cross-chain analyses.

13

Figure 2.4: Pre-fork UTXOs can be spent on both the parent and the forked chain.

UTXOInputOutput UTXOInput

Parent

Chain

Forked

Chain

= =

Block n Block n+1 Block n+2

Input

Fork

UTXOInputUTXOInputOutputInput

shared history

2.1.4 Bitcoin
Bitcoin is known as the first cryptocurrency. We cover Bitcoin in more detail because
BlockSci only supports DLPs that use the same data format as Bitcoin. The white
paper of Bitcoin was published in 2008 under the pseudonym Satoshi Nakamoto [11]. A
couple of months later the Bitcoin blockchain went live in January 2009. Bitcoin became
known to the general public due to widespread media coverage following the significant
price increases in 2017. With a 67% share of market capitalization among more than
5,400 cryptocurrencies listed on CoinMarketCap.com [12] as of May 2020, Bitcoin can be
considered the most valuable cryptocurrency. Most concepts of the previous sections are
used by Bitcoin: data is stored in a blockchain, PoW-based mining with a target block
time of 10 minutes is used for the random leader selection, and the UTXO model is used
as the transaction model.

Data Format

Figure 2.5 shows the data layout of Bitcoin. The top-level data structure are blocks,
which contain transactions, and transactions contain the inputs and outputs of the UTXO
model. All data structures have several metadata fields. For example, blocks contain
a timestamp, the nonce used by the miner, and the previous block hash. This hash
cryptographically links each block with the previous block to create the blockchain. An
in-depth coverage of all fields can be found in [8]. Inputs reference the output that they
spend using the (tx hash, output index) tuple. Both inputs and outputs contain a
script written in the Bitcoin Script language.

14

Figure 2.5: Data format of Bitcoin [8]. Dashed lines represent links between blocks and
from inputs to the output they spent.

Transaction

versionuint32

locktime4 bytes

Inputs

input countVarInt

inputslist

Outputs

output countVarInt

outputslist

Block

block size (bytes)4 bytes

Block Header

version4 bytes

prev. block hash32 bytes

merkle root32 bytes

timestamp4 bytes

difficulty target4 bytes

nonce4 bytes

Transactions

tx countVarInt

transactionslist

Input

tx hash32 bytes

output index4 bytes

unlocking script sizeVarInt

unlocking scriptVar

sequence number4 bytes

r
e
fe

r
e
n
c
e
 t

o
 t

h
e

s
p
e
n
t
 o

u
t
p
u
t

🔒

Output

amount in satoshis8 bytes

locking script sizeVarInt

locking scriptVar

Bitcoin Script

Bitcoin uses a custom domain-specific language called Script to define spending conditions.
Every output defines a spending condition in Script, and the input that spends the output
must provide a valid script to fulfill this condition. Script is a simple stack-based language
that is deliberately not Turing-complete. This increases predictability and security, e.g.,
prevents denial-of-service attacks. It supports several instructions called opcodes12.
Script uses reverse-polish notation, i.e., the operands come first and then the operator.
Figure 2.6 illustrates the execution of the script 2 3 ADD 5 EQUAL. It adds two numbers
(2 and 3) and checks if the result is equal to the expected sum (5). The numbers represent
data and are pushed onto the stack. The opcodes ADD and EQUAL pop operands from the
stack and push back the result (true). [8]

Figure 2.6: Step-by-step execution of a simple script. [8, p. 135]
Script: 2 3 ADD 5 EQUAL

2

2

3

2

3

ADD

5

5

5

5

EQUAL

true

Stack Stack Stack Stack Stack

12A list of all supported opcodes can be found at [13].

15

The example above illustrates the mechanics of Script. However, more involved scripts
are needed to create transactions that transfer coins between users. Bitcoin transactions
are validated by evaluating the scripts for every input-output pair of the transaction. The
scripts of the spent output and the spending input are combined as shown in Figure 2.7.
The input script comes first, followed by the output script. The combined script is
evaluated and the result determines whether the transaction is valid or not. Transactions
are valid if the top element on the stack is true or any other non-zero value, or if the
stack is empty after the execution [8, p. 134].

Figure 2.7: Bitcoin combines the input and output scripts to validate transactions.

Transaction

Transaction

Input: fulfill spending condition, e.g. provide a valid signature for the given pubkey

script = <sig> <pubkey>

Output: specify spending condition, e.g. pay to whoever provides a valid signature

script = OP_DUP OP_HASH160 <pubkeyHash> OP_EQUALVERIFY OP_CHECKSIG
Input

Output

input references spent output

o
r
d
e
r
 o

f
s
c
r
ip

t
 e

x
e
c
u
t
io

n

Resulting script: <sig> <pubkey> OP_DUP OP_HASH160 <pubkeyHash> OP_EQUALVERIFY OP_CHECKSIG

Input script Output script

push signature

and pubkey

on the stack

duplicate top

stack element

(pubkey)

hash top

stack element

(pubkey)

push pubkey

on the stack

check if

input and output

pubkeys are equal

check signature

using pubkey

and push result

o
r
d
e
r
 i
n
 t

h
e
 b

lo
c
k
c
h
a
in

Address Types

Bitcoin supports several pre-defined script patterns, also known as address types. The
most common types are Pay-to-Public-Key-Hash (P2PKH)13, Pay-to-Script-Hash (P2SH),
and Multisig. All of them transfer coins from one address to another. The OP_RETURN or
nulldata type creates outputs that store arbitrary data in the blockchain. Such outputs
can not be spent and the contained coins are irreversibly lost. All other scripts that do
not follow any of these patterns are called non-standard scripts.
When Bitcoin was released the Pay-to-Public-Key (P2PK) address type as shown in

Listing 2.1 was frequently used. The sender provides the full public key of the recipient
in the output. The spending input must provide a valid signature for the output’s public

13And its simpler but less frequently used Pay-to-Public-Key (P2PK) variant.

16

key, i.e., the spending condition is “pay to whoever can provide a valid signature for
the attached public key”. When evaluating a P2PK script, the signature of the input is
pushed onto the stack first, followed by the public key of the output. The OP_CHECKSIG
opcode pops both values of the stack and checks whether the signature is valid.

Listing 2.1: Pay-to-Public-Key (P2PK) script
input = <sig>
output = <pubKey> OP_CHECKSIG

The Pay-to-Public-Key-Hash (P2PKH) script shown in Listing 2.2 is similar to the
P2PK type and largely superseded it. Instead of the public key it provides a hash of the
public key in the output, i.e., the spending condition is “pay to whoever can provide a
valid signature for the attached hashed public key”. During script evaluation, the input’s
<pubKey> is duplicated with OP_DUP and then hashed using OP_HASH160. This hashed
version of the input’s <pubKey> is compared to the <pubKeyHash> of the output using
OP_EQUALVERIFY. If they are equal, OP_CHECKSIG is used to verify the signature.

Listing 2.2: Pay-to-Public-Key-Hash (P2PKH) script
input = <sig> <pubKey>
output = OP_DUP OP_HASH160 <pubKeyHash> OP_EQUALVERIFY OP_CHECKSIG

Another common address type is Pay-to-Script-Hash (P2SH), as shown in Listing 2.3.
P2SH outputs provide the hash of the script that can unlock the output, i.e., the spending
condition is “pay to whoever provides a script that a) matches this hash and b) executes
successfully”. While P2SH addresses do not require to use signatures, it is common
and recommended to do so. P2SH input scripts can wrap another address by setting
the redeemscript to the script pattern of another type, e.g., redeemscript = <sig>
<pubkey> OP_CHECKSIG to wrap a P2PK address. P2SH addresses are often used to
wrap a multi-signature address.

Listing 2.3: Pay-to-Script-Hash (P2SH) script
input = <sig> <redeemscript>
output = OP_HASH160 <HASH160(redeemscript)> OP_EQUALVERIFY

Multi-signature addresses, commonly called multisig addresses, provide N public keys
in the output and M valid signatures must be provided in the input that spends the
output. This is known as a M-of-N scheme, as in “pay to whoever provides M signatures
for the given set of N public keys”. This facilitates that coins are controlled by multiple
parties. For example, an enterprise could protect their coins so that at least two of (chief
executive officer, chair, head attorney) have to sign transactions.

Listing 2.4: Multi-signature script
input = OP_0 <signature A> [<signature B>] [< signature M>]
output = <M> <pubkey A> [<pubkey B>] [<pubkey N>] <N> OP_CHECKMULTISIG

17

Bitcoin Forks

The popularity of Bitcoin has caused the emergence of more than 50 forks [14]. Some
of these forks emerged due to disagreement over the future of Bitcoin. A prominent
example is Bitcoin Cash, which forked off Bitcoin in August 2017 at block height 478,558,
after controversy regarding the maximum block size. This debate continued and led
to the Bitcoin SV fork that branched off Bitcoin Cash in November 2018. Most of
Bitcoin’s forks can be considered failed and are irrelevant. This is backed by the fact
that CoinMarketCap [12] only lists 10 of the 50 forks listed on [14], see Table 2.2. We
conjecture many of the failed forks were mainly created to take advantage of Bitcoin’s
name and prominence. Figure 2.8 shows a timeline with all forks that have a market
capitalization over USD 100 million.

Table 2.2: Bitcoin forks listed on CoinMarketCap [12]

Rank1 Coin Fork Market cap.
Name Symbol Height Date

5 Bitcoin Cash BCH 478,558 2017-08-01 $ 4,935,841,838
6 Bitcoin SV2 BSV 556,766 2018-11-15 $ 3,903,660,757

39 Bitcoin Gold BTG 491,407 2017-10-24 $ 173,592,624
57 Bitcoin Diamond BCD 495,886 2017-11-24 $ 109,539,201
294 MicroBitcoin MBC 525,000 2018-05-28 $ 11,871,814
814 Bitcoin Atom BCA 505,888 2018-01-24 $ 1,362,332

1486 Bitcoin Interest BCI 505,083 2018-01-20 $ 89,215
2176 Super Bitcoin SBTC 498,888 2017-12-12 –3

2339 BitcoinX BCX 498,888 2017-12-12 –3

2442 Bitcoin God GOD 501,225 2017-12-27 –3

1: by market capitalization on CoinMarketCap [12] as of May 9, 2020
2: forked from Bitcoin Cash, –3: market cap. not available

Figure 2.8: Bitcoin forks with a market cap. over $ 100 million as of May 9, 2020 [12].

2017 2018 2019 2020

Bitcoin

Bitcoin CashAug 1

Nov 15

Nov 24

Bitcoin Diamond

Bitcoin SV
$ 4 bn

$ 5 bn

$ 178 bn

Oct 24

Bitcoin Gold

$ 0.11 bn

$ 0.17 bn

18

2.2 Blockchain Data Analysis
Public blockchains provide a very large dataset of financial transactions. The Bitcoin
blockchain alone is almost 300 GB as of May 2020. Blockchain data analysis can help
to better understand these new systems, detect trends, but also identify potentials and
risks. The scope of this work are analyses that not only analyze external blockchain data,
e.g., prices, but (also) include data from the ledger itself. In the following we summarize
a selection of prior blockchain data analysis research. Many of the available works cover
privacy, cybercrime, or user behavior.

The public nature of blockchains can pose a privacy risk to the users. This has already
been shown in 2013 for the Bitcoin blockchain [5]. Albeit users can generate an arbitrary
number of addresses, they can be clustered by users using heuristics. We cover address
clustering in more detail in Section 2.2.1. Blockchains like Monero and ZCash are known
for their privacy-enhancing features. Möser et al. empirically analyze traceability in the
monero blockchain [15]. They find that for 62% of all transaction inputs with mixins the
real input can be deduced by elimination in a “chain-reaction” analysis. Kappos et al.
evaluate the privacy of ZCash [16]. They find that most users do not take advantage of
ZCash’s privacy features, and the users who do are using the features in a wrong way
such that the anonymity set can be decreased significantly.

Due to a higher level of privacy, DLPs are frequently used for criminal activities. This
includes payments on darknet markets, ransomware payments, and money laundering.
Vasek et al. [17] empirically analyze cryptocurrency scams such as mining scams, scam
wallets, fraudulent exchanges, and Ponzi schemes. They found that in all 192 analyzed
scams at least USD 11 million have been paid by 13,000 distinct victims. Huang et al.
[18] did a similar analysis for ransomware payments. They found that for the analyzed
ransomwares, 19,750 potential victims paid over USD 16 million ransom over a two-year
period.
Bartoletti et al. [19] study the usage of Bitcoin’s OP_RETURN opcode that can store

arbitrary data in the Bitcoin blockchain. They detected several protocols that serve as a
digital notary or provide ownership certificates for an asset.

2.2.1 Address Clustering
Blockchain transactions transfer coins from one address to another. While every user
could use a single address for all activities, this is not the case in practice. Instead, most
wallets create a new address for every transaction to protect the privacy of the user. This
complicates law enforcement investigations but also all studies that aim to analyze data
on a per-user level. Address clustering can mitigate this issue to some extend. It uses
heuristics to link addresses that are likely controlled by the same user or entity. Two
heuristics are commonly used: multi-input and change address detection. [5, 20]

1. The multi-input heuristic assumes that all inputs spent in the same transaction
are controlled by the same entity. The underlying assumption is that a transaction
is usually created by a single user. Thus, for a given transaction the heuristic links
the addresses of all inputs. [5]

19

2. The change heuristic tries to identify the change address of a transaction, e.g.,
based on client software or user behavior. The underlying assumption is that
the change output is locked to an address that is controlled by the creator of
the transaction. From the multi-input heuristic we known that the creator likely
controls all input addresses. Thus, the change address can be linked with the input
addresses. [5, 20]

The heuristics can be applied on all transactions of a blockchain to create a graph of
addresses. In the resulting clustering, all connected addresses should belong to the same
user. An address clustering is inherently imperfect, as the heuristics may produce false
positives, i.e, spurious edges, and false negatives, i.e., missing edges. Figure 2.9 shows
how the multi-input heuristic is applied over multiple transactions. BlockSci provides a
clustering module to automate this process, see Section 2.3.4. In Section 4 we present an
enhanced address clustering technique that works across chains.

Figure 2.9: Using the multi-input heuristic to link addresses.

A1 A2 A3

A1 A2 A3

A1 A2 A3

Graph of all addresses of a chain

Input: A1 Output

Input: A3

Input: A4

Output

Input: A1

Input: A2

Output

Iterate chain and apply heuristics

A4

A4

A4

Output

Input: A3
Result: cluster with 4 addresses,

i.e., all belong to the same user

address cluster

2.2.2 Cross-Chain Analyses
The term cross-chain or cross-blockchain was previously used primarily in the context
of cross-chain interoperability, e.g., to enable atomic cross-chain transactions [21, 22].
Cross-chain data analyses combine data of multiple chains. This can improve existing
single-chain analyses but also allows novel analyses. As cross-chain data analysis is a
rather new approach, there is only few prior work and no widely accepted terminology
for possible types of cross-chain analyses.
Harrigan et al. [23] examined how the airdrop of the Clams coin to existing Bitcoin,

Litecoin, and Dogecoin addresses affected the privacy of the owners. An airdrop is a
mechanism to distribute coins or tokens by sending them to random existing addresses.

20

Airdrops are commonly used to promote a new token by bringing it to the recipient’s
attention. Harrigan et al. successfully applied cross-chain address clustering using data
from the Clams chain to enhance clusters in the Bitcoin, Litecoin, and Dogecoin chains.
They conclude that sharing addresses between blockchains poses a risk to the privacy of
the user.

Hinteregger et al. [24] used a cross-chain analysis to assess the traceability of Monero
transactions. They used data from the Monero blockchain and its hard forks MoneroV
and Monero Original to distinguish Monero’s decoy inputs from real inputs. They found
that Monero’s recent protocol updates, e.g., increasing the minimum ringsize, render
existing heuristics not more effective than random guessing. They note that this may
change in the future as new Monero hard forks might occur that see more activity and
thus, provide more data to improve the results.

2.2.3 Existing Tools
Blockchain data analysis has several characteristics that differ from other data analysis
tasks. A blockchain can contain hundreds of gigabytes of data and this amount is growing
continuously. Such large amounts of data are often stored and processed in a distributed
database for performance reasons. But as blockchain data is graph-structured, it is
difficult to partition the data effectively. General-purpose databases do not provide
sufficient performance [4]. Instead, specialized high-performance tools like BlockSci are
needed. Due to the scope of this work we cover BlockSci in greater detail in the separate
Section 2.3. In the following we briefly present existing alternatives to BlockSci. However,
most of them provide worse performance and/or functionality. While the presented
open-source solutions are general-purpose analysis tools or frameworks, most commercial
tools have a dedicated use case like forensics, or transaction monitoring to support
businesses comply with regulations.

Open-Source Tools

• BTCSpark [25] is a Bitcoin analysis platform based on the distributed Apache
Spark database. The project website states it “is currently unmaintained. BlockSci
is a similar project with better performance”. According to [4], BTCSpark is up to
8 times slower than BlockSci while needing up to 15 times more resources.

• BlockParser [26] is a C++-based blockchain parser for Bitcoin and similar cryp-
tocurrencies. It processes the blockchain linearly and single-threaded. The user can
extract data by hooking to several events, e.g., parsing block, or parsing transaction.
BlockParser is very slow because it iterates the entire blockchain from disk for
every analysis. The project has not been maintained since late 2015. BlockParser
is used for the analysis in [17]. According to [4], BlockParser is up to 130 times
slower than BlockSci.

• BitIodine [27] is a modular Bitcoin parser that builds upon BlockParser. It is
written in Rust and has an integrated address clustering feature. As a storage

21

engine it uses SQLite. The project is unmaintained since late 2018.

• rusty-blockparser [28] is another Bitcoin parser. It that also supports similar
blockchains such as Litecoin, Namecoin, and Dogecoin. It converts blockchain data
to CSV files that can be used for analyses. The project is unmaintained since
May 2018.

• GraphSense [29] is a distributed analysis platform for Bitcoin based on Apache
Spark and Cassandra. Under the hood GraphSense uses BlockSci for the extract,
transform, load (ETL) process. GraphSense is the only domain-specific blockchain
analysis tool in this list that is actively maintained. It is developed at the Austrian
Institute of Technology, supported by public funding14. GraphSense has a web
interface to explore blockchain data and supports address clustering. It allows to
search for addresses across blockchains, however, it does not support cross-chain
address clustering.

• Neo4j [30] is a popular general-purpose graph database. Neo4j is used for analyses
in [2, 3]. The blockchain2graph project [31] offers a tool that imports the Bitcoin
blockchain into a Neo4j database. According to [4], Neo4j is up to 600 times slower
than BlockSci due to the lack of domain-specific optimizations.

Of all six presented tools, only GraphSense and Neo4j are actively maintained. Graph-
Sense relies on BlockSci to parse blockchain data, and Neo4j is a general-purpose database
with insufficient performance. The rest of the tools are unmaintained and also provide far
lower performance than BlockSci. That said, BlockSci is de-facto the only publicly avail-
able tool that allows efficient blockchain data analyses of Bitcoin and related blockchains.
To the best of our knowledge only GraphSense includes basic optimizations to access
data across chains. However, it does not support flexible and programmable cross-chain
analyses.

Commercial Tools & Services

Some known vendors are Chainalysis Inc. [32], Elliptic Enterprises Limited [33], and
CipherTrace Inc. [34]. All of them specialize in use cases such as forensics, being compliant
with regulations (“due diligence”), or performing other security-related investigations.
The commercial tools could not be tested for cross-chain support due to their proprietary
business model with high licensing fees. According to the information available on the
vendor’s websites, only Chainalysis Inc. offers some type of multi-currency support:
“across [...] 10 cryptocurrencies you can: [...] build graphs for enhanced due diligence
and investigations, understand the counterparties in transactions, track the flow of funds
between entities.” [35]. However, no details about the implementation and its features
are given. It also remains unclear whether cross-chain address clustering is supported.

14EU’s H2020 TITANIUM project and Austrian’s FFG VIRTCRIME project

22

2.3 BlockSci: High-Performance Blockchain Analysis Tool
BlockSci is an open-source blockchain analysis tool developed by Kalodner et al. [4].
Compared to the analysis tools presented in Section 2.2.3, BlockSci provides a powerful,
user-friendly interface and very high performance. For example, all Bitcoin transactions
can be iterated in a few seconds. This is possible due to a highly optimized, domain-
specific architecture. BlockSci converts raw blockchain data into a custom data layout
that is optimized for analysis. This data layout is stored on disk and is mapped into
memory for analyses. Thus, BlockSci is a domain-specific in-memory database. The
analysis library accesses this database and provides an intuitive Python interface. It
exposes a Blockchain object that represents the entire chain. Using this object the
analyst can easily access all data of the blockchain. Listing 2.5 shows code that calculates
the average transaction fee for a given month.

Listing 2.5: Sample query to retrieve the average transaction fee in Mar 2019.
import blocksci
chain = blocksci.Blockchain("/btc/config.json")

fees = []
for block in chain.range("Mar 2019"):

for tx in block:
fees.append(tx.fee)

print("Avg. tx fee in Mar 2019: " + mean(fees))

Besides the Python interface, BlockSci also has a C++ interface that provides higher
performance. BlockSci supports blockchains that use the same UTXO-based data format
as Bitcoin (Section 2.1.4), e.g., Bitcoin Cash, Bitcoin SV, Litecoin, and ZCash. All of
them can be converted to the optimized data layout using BlockSci’s parser. Blockchains
with a different format are not supported, e.g., Ethereum with its account-model-based
layout. BlockSci comes with several useful analysis features. Its address clustering module
allows to cluster addresses using the multi-input and the change heuristic. CoinJoin
transactions [36] can automatically be detected and excluded from clustering to avoid
false positives. BlockSci also includes a currency converter that provides up-to-date
exchange rates.
The following sub-sections cover BlockSci’s architecture in detail. We only cover

the parts of BlockSci that are required to understand the rest of this work. For the
parts that are not described we refer to [4] and the official BlockSci documentation [37].
The provided information is valid for the current development version 0.6, in particular
Git revision 8681010 in repository [38]. Figure 2.10 gives an overview of BlockSci’s
architecture. Prior to performing an analysis, the user has to create a JSON-based config
file for the blockchain (Step 1). This config file is needed to start the parser (Step 2) that
converts raw blockchain data to BlockSci’s data layout. Then the user can analyze the
blockchain using a Jupyter Notebook that interacts with the analysis library (Step 3).
The analysis library maps large parts of the optimized data layout into memory for fast
access.

23

https://github.com/mplattner/BlockSci/commit/86810100937ea691189ac9116b5cb12ae89f9eb7

Figure 2.10: Overview of BlockSci’s Architecture

Parser

BlockSci Data Layout

on-disk

Transaction data

Address data

Indices

Analysis Library

2

User

parse blockchain 3analyze blockchain

Raw

Blockchain Data

command-line Jupyter Notebook

Chain Config

JSON file

1 create config file

Parser State

Memory

map into

2.3.1 Config File
BlockSci’s chain config file contains all settings that are needed by the parser and the analy-
sis library. A sample config for Bitcoin is shown in Listing 2.6. The chainConfig contains
chain-specific settings: coinName specifies the name of the coin; dataDirectory sets the
directory that contains the optimized blockchain data; pubkeyPrefix, scriptPrefix,
and segwitPrefix set the P2PK(H), P2SH, and Segregated Witness (SegWit) prefixes
needed to generate string representations of addresses; and segwitActivationHeight
defines the block height of SegWit activation, if activated. The parser key configures the
parsing process: coinDirectory defines the path to the node software’s data directory;
blockMagic defines the chain-specific magic bytes that raw blocks on disk start with;
and hashFuncName configures the hash function to calculate block hashes, needed to
parse blocks in the correct order. The maxBlockNum setting defines the block height to
parse up to.

24

Listing 2.6: Sample BlockSci config file for Bitcoin
{

"chainConfig": {
"coinName": "bitcoin",
"dataDirectory": "/parser_output",
"pubkeyPrefix": [0],
"scriptPrefix": [5],
"segwitActivationHeight": 481824,
"segwitPrefix": "bc"

},
"parser": {

"disk": {
"coinDirectory": "/bitcoin_node_data",
"blockMagic": 3652501241,
"hashFuncName": "doubleSha256"

},
"maxBlockNum": 501951

},
"version": 5

}

2.3.2 Data Layout
After creating the config file the user can start the parser to convert raw blockchain
data into BlockSci’s optimized data layout. This section covers the data layout, and
the next section covers how the parser creates output data corresponding to this layout.
Figure 2.11 shows the data layout of BlockSci that we reference to throughout this section.
The layout separately stores transaction data, address data, indices, and the parser state.
Transaction data and address data are stored as serialized C++ structs, while the indices
are stored in a key-value store. The serialized structs allow that the analysis library
(Section 2.3.4) can memory-map those files for fast and simple access. The parser state
stores data that is needed during the parse process.

25

Figure 2.11: BlockSci’s data layout that is optimized for analysis

Address Data

Type: memory-mapped files

Pubkey

(fixed size)

txFirstSeenuint32

txFirstSpentuint32

typesSeenuint32

uint160 pubkeyHash

PubKey pubkey

union

hasPubkeybool

ScriptHash

(fixed size)

uint160 hash160

uint256 hash256

union

wrappedAddressAddr

isSegwitbool

Multisig

(variable size)

muint8

nuint8

addressesaddrs

NonStandard

(variable size)

scriptDatavar

Raw

(variable size)

rawDatavar

Transaction Data

Type: memory-mapped files

RawBlock

(fixed size)

blocksFile

firstTxIndexuint32

numTxesuint32

heightuint32

hashuint256

versionint32

timestampuint32

bitsuint32

nonceuint32

realSizeuint32

baseSizeuint32

coinbaseOffsetuint64

RawTransaction

(variable size)

tx_dataFile

realSizeuint32

baseSizeuint32

locktimeuint32

inputCountuint16

outputCountuint16

array of Inout

(inputs)

spentTxNumuint32

addressNumuint32

addressType4 bit

value60 bit

array of Inout

(outputs)

spendingTxNumuint32

addressNumuint32

addressType4 bit

value60 bit

TxHash

(fixed size)

tx_hashesFile

txHashuint256

Indices

Type: RocksDB databases

tx hash → tx number1: TxHashIndex

address identifier → address number

 ∟e.g. pubkey, pubkey hash, script hash etc.

2: AddressIndex

address num. → list[outputs sent to address]3: AddrOutputsIndex

nested address num. → wrapping addr. num.4: NestedAddrsIndex

Parser State

Type: custom serialized data structures (eg. google::dense_hash_map)

AddrMultiUseMap

address identifier → address number

 ∟e.g. pubkey, pubkey hash etc.

AddrBloomFilter

address identifier → seen (yes/no)

 ∟e.g. pubkey, pubkey hash etc.

UTXOCache

(tx hash, output number) → tx number

26

Transaction Data

Block metadata (RawBlock) and transactions (RawTransaction) are stored in separate
files. Each transaction struct is followed by a list of inputs and outputs – both are
represented by the same struct called Inout. Inputs have a reference to the transaction
that contains the spent output in spentTxNum. Bitcoin’s 32-byte transaction hash pointer
is replaced with a 4-byte transaction number. Likewise, if an output has been spent,
spendingTxNum contains a reference to the transaction that contains the spending input.
This allows efficient graph traversal, e.g., to follow a flow of coins. Some less frequently
accessed data is stored in separate memory-mapped files. For example, only few analyses
need to access transaction hashes and thus, they are stored separately (TxHash) from
the main RawTransaction struct. This optimizes memory access and CPU caching by
avoiding that not needed data wastes space in cache lines.

Address Data

Address data is stored separately from transaction data. This allows to deduplicate input
and output scripts. BlockSci deduplicates scripts in two ways. First, BlockSci has the
notion of equivalent addresses [37]. Address types are considered equivalent when the
same information is required to spend them, e.g., both P2PK and P2PKH addresses
require knowledge of the private key. The data layout only stores a single entry for all
equivalent instances of an address. This approach does not only reduce the size of the
data structure, but also allows the analysis library to expose “equivalent addresses” to
the user. Second, BlockSci deduplicates the scripts itself. Existing address records are
reused when the same address occurs multiple times, i.e., when an address receives coins
repeatedly.

Every supported address type (addressType) has its own struct (Pubkey, ScriptHash
etc.). The serialized structs are stored in separate memory-mapped files per type. BlockSci
assigns an incrementing integer (addressNum) to every new unique address, e.g., the 10th

unique P2SH address gets assigned number 9. This allows direct lookups within the
memory-mapped file using the offset calculated by addressNum * sizeof(ScriptHash).
Every address in BlockSci can uniquely be identified by the tuple (addressType,
addressNum). Inputs and outputs use this tuple to store a reference to the contained
address. Each deduplicated address type struct has three common fields that store usage
metadata: txFirstSeen and txFirstSpent reference the transactions where the address
first occurred in an output (seen) respectively in an input (spent); and typesSeen stores
which of the specific equivalent types have been seen, e.g., only P2PK, only P2PKH, or
both for Pubkey. The usage metadata is followed by individual fields for every address
type. For example, given a P2PKH output, the Pubkey struct stores the public key hash
that is provided in the output script in pubkeyHash. As soon as this output is spent by
an input, the public key is revealed and BlockSci replaces the hash with the public key
in pubkey. The hash can still be calculated from the public key, if needed.

27

Indices

In addition to the memory-mapped transaction and address data structures, BlockSci
maintains four indices that are stored in RocksDB databases [39]. RocksDB is a very
fast and versatile key-value store that is optimized for SSD storage. It can be optimized
for different kinds of workloads and offers many performance tuning options. Note that
BlockSci internally uses other, less intuitive index names than given below.

1. TxHashIndex: transaction hash → transaction number
This index maps transaction hashes to BlockSci’s internal transaction number. It
is needed to retrieve transactions by hash.

2. AddressIndex: address identifier → address numbers
This index maps address identifiers, e.g., public key, public key hash, or script hash,
to BlockSci’s internal address number. It is needed to retrieve an address by its
address string. The parser uses this index to deduplicate addresses, i.e., to check
whether an address has been seen before.

3. AddrOutputsIndex: address number received−−−−→ list[outputs sent to this address]
For every address, this index stores a reference to all outputs that have been sent
to this address. It is needed to calculate the balance of an address, among other
queries. A separate index is maintained for every supported address type.

4. NestedAddrsIndex: nested address number wrapped in−−−−−−→ wrapping address number
Recall that a P2SH address can wrap another address (Section 2.1.4). BlockSci stores
a reference to the wrapped address in ScriptHash.wrappedAddress. Additionally,
BlockSci stores references from multisig addresses to the contained P2PK(H)
addresses in Multisig.addresses. This index stores the reverse mapping for both
address types. It is needed for BlockSci’s equivalent addresses feature. A separate
index is maintained for every supported address type.

Parser State

Parsing is stateful and the parser needs to maintain the current state between runs. The
UTXOCache is needed to link new inputs to the output they spend. Both AddrBloomFilter
and AddrMultiUseMap are used for address deduplication. All three data structures are
covered in more detail in the next section.

2.3.3 Parser
BlockSci’s parser is the component that converts raw blockchain data into the described
data layout. This process involves multiple non-trivial and computation-intensive tasks
such as script parsing, data deduplication, and linking outputs with the inputs that spend
them. This makes the parser the most complex part of BlockSci. Figure 2.12 illustrates
the steps performed by the parser. The parser is invoked by the user with the chain
config file and the update command.

28

Figure 2.12: Parser sequence to convert raw blockchain data to the optimized layout

Chain Importer

Multi-threaded Transaction Processing Pipeline

1. Store TX Hash

Calculate TX hash and write it

to a memory mapped file.

3. Manage UTXO Cache

Store UTXO for every output

in a map. For every input,

remove the spent UTXO from

the map.

Start Parser

command-line interface

blocksci_parser /btc/config.json update

chain/tx_data

memory-mapped file

Data structures:

RawTransaction, Inout

TX
TX
TX Block Metadata

2. Parse Scripts

Parse the scripts of outputs and

inputs to detect the address

type. Needed for script de-

duplication.

4. De-duplicate Addresses

For every input/output, assign

a new ID for unseen addresses

and reuse the existing ID for

seen addresses.

5. Serialize Transaction

Serialize transaction including

inputs and outputs. Both have

a reference to the contained

address.

6. Serialize Addresses

Serialize new and update

existing addresses, e.g. set

txFirstSpent, or add revealed

pubkeys to P2PKH addresses.

scripts/*

memory-mapped files

Data structures (one per file):

Pubkey, ScriptHash,

Multisig, NonStandard, Raw

De-dup. Helper Structures

1+2: serialized map, 3: RocksDB

1. AddrBloomFilter

2. AddrMultiUseMap

3. AddressIndex

Node Software

Raw Data

on-disk

config.json

chain config

option 1

Interface

JSON-RPC

option 2

chain/tx_hashes

memory-mapped file

Data structure: TxHash

chain/blocks

memory-mapped file

Data struct.: RawBlock

parser/utxoCache

parser state

Serialized hashmap that maps

(tx hash, output num)

 ↳ (tx num)

Final (post-pipeline) Step: Update Indices

p
a
r
s
e
r
 s

t
a
t
e

The chain importer supports two input options for raw blockchain data. Data can
be read directly from the on-disk node data directory, or via the JSON-RPC interface

29

that most nodes provide. The first option is very fast due to a node-specific binary
reader. The second option is slower but does support more blockchains due to the
de-facto standardized JSON-RPC interface. The importer does directly persist block
metadata (RawBlock) to a memory-mapped file. Transactions need more processing
and are passed to a multi-threaded pipeline with six steps15. During this process an
incrementing integer is assigned to every transaction. A description of every pipeline
step is given in Figure 2.12. In the following we cover additional details that are relevant
along the pipeline.
As mentioned previously, parsing is stateful. One type of state is the current set of

UTXOs (UTXOCache). It stores a map from (tx hash, output num)→ transaction number
and is maintained in Step 3 of the pipeline. The map is needed to link new inputs to the
output they spend. An entry is added for every new output. For every input, the entry
of the spent output is retrieved and removed from the map. In this step Bitcoin’s 32-byte
transaction hash pointers are converted to the corresponding transaction number.
Another type of state is needed for address deduplication in Step 4. A required pre-

processing task for address deduplication is address type detection by parsing the scripts
in Step 2. For the actual deduplication, the parser maintains an index of seen addresses
(AddressIndex) and a counter for every address type. When the address of a parsed
input/output is seen for the first time, a fresh address number is assigned. Otherwise the
existing address number is assigned. Resolving whether an address has been seen uses
the disk-based AddressIndex. For Bitcoin this index has over 40 gigabytes and thus,
queries to it are relatively slow. Keeping it in memory would significantly increase the
memory requirement. Therefore the parser uses a hierarchical caching mechanism with
three layers to improve performance, as shown in Figure 2.13.

Figure 2.13: BlockSci’s mechanism to check whether an address has been seen before.

AddrBloomFilter

Layer 1

AddressIndex

Layer 3

AddrMultiUseMap

Layer 2

Address

identifier

e.g. pubkey

seen

possibly yes

no

seen

no

yes

assign new addr. num.

use existing addr. num.

seen

noyes

parser state

The first layer is a bloom filter that stores all seen addresses. A bloom filter is a
probabilistic data structure to check if an element is a member of a set. The results from
bloom filters can include false positives, but negative results are always correct. In other
words, a bloom filter returns either “certainly not seen” or “possibly seen”. Thus, if the
15We present a simplified pipeline. BlockSci’s actual pipeline has additional (sub-)steps.

30

bloom filter returns false, i.e., address has not been seen, a new number can be assigned
immediately. Otherwise, the second layer is queried: a map that stores all addresses
that have previously been used more than once. This is due to the observation that
only 8.6% of all Bitcoin addresses are used more than once, but those account for 51%
of all occurrences [4]. The last layer is the RocksDB-based AddressIndex that maps
address identifiers, e.g., a pubkey or pubkey hash, to the address number. The bloom
filter and multi-use map are only used by the parser and thus, are stored as part of the
parser state. The AddressIndex, however, is also used by the analysis library16 and is
stored with the other indices of the optimized data layout. This distinction of storage
locations is relevant in Section 3. The described address deduplication is applied to all
address types except non-standard and nulldata (OP_RETURN outputs), which are always
assigned a fresh address number. The result of Step 4 is that every input and output of
the processed transaction has an assigned address number.
Another optimization is applied in Step 6 that serializes address data (Pubkey,

ScriptHash etc.) to separate memory-mapped files per address type. For common
address types like P2PK(H) or P2SH, the scripts always follow the same pattern of
op-codes and data arguments in between (Section 2.1.4). Thus, scripts of one type only
differ in the individual data they push onto the stack, e.g., the pubkey, script hash, or
signature. To reduce the size of the dataset the parser only stores relevant data for each
address type, e.g., the pubkey for P2PK(H) addresses. Common op-codes and signatures
do not provide any relevant information and are stripped.
After processing all transactions, the parser updates the RocksDB-based indices

TxHashIndex, AddrOutputsIndex, and NestedAddrsIndex. Only the AddressIndex is
updated as the parser processes transactions.

2.3.4 Analysis Library
Once the parser has converted the blockchain to the optimized data layout, the user can
analyze the blockchain using the analysis library. The library is responsible for loading
and accessing data. It exposes data via a Python and a C++ interface. The recommended
analysis mode is using the Python interface in a Jupyter Notebook. The C++ interface
is faster than Python and should be preferred for performance-critical analyses. Using
the chain config file the user can initialize a Blockchain object, as shown previously in
Listing 2.5. This chain object acts as an entry-point to access data of the blockchain.
It is iterable so that the user can easily iterate over all blocks using a loop. Blocks are
iterable as well to access all contained transactions. The documentation for the full API
can be found at [37].
BlockSci uses the same data layout on-disk and in-memory for transaction data and

address data. Thus, loading the data simply involves memory-mapping those files using
the mmap() syscall [40, p. 1017]. Using memory-mapped I/O has several advantages.
The operating system can transparently handle many aspects of loading the file: memory
management, caching using the page cache, and swapping pages out if the system runs

16To retrieve an address by address string, e.g., resolve pubkey hash → address num.

31

out of memory. No memory needs to be allocated manually, and no objects need to be
initialized on the heap or the stack. Instead, once the mapping is created all elements in
the file are immediately accessible as C++ structs. The mmap() syscall returns a pointer
to the beginning of the mapping. Casting this pointer to the type of the underlying data
structure, e.g., RawBlock, allows to directly address and access elements using the object-
oriented interface that the RawBlock struct defines. That said, the memory-mapping
approach provides instant access to hundreds of million transactions. All data is only
loaded into memory on-demand. On first access a page fault occurs and the operating
system loads the accessed page into memory. A drawback of memory-mapped I/O is
that parser output data is less portable, i.e., it can only be used on the same architecture
it was created on. Loading the parsing on other hardware, e.g., with a 32 bit instead of
64 bit CPU, may not work.

Address Clustering

The analysis library comes with a built-in address clustering module17. It supports
the multi-input and nine different kinds of change heuristics that the user can choose
from. Figure 2.14 illustrates BlockSci’s address clustering implementation. The first step
involves the initialization of a Union-Find data structure with all addresses that appear
on the blockchain. A Union-Find or Disjoint-Set data structure allows to partition a
set of elements into disjoint subsets. In our case we want to partition addresses into
clusters that contain addresses controlled by the same user or entity. BlockSci uses the
Union-Find implementation by Jakob [41]. After the Union-Find initialization of Step 1,
every address is in its own cluster. In Step 2 all transactions are iterated to apply the
clustering heuristics. Substep 2.1 detects and excludes CoinJoin transactions to avoid
false positives, i.e., spurious edges in the address graph. The multi-input heuristic is
enabled by default and links all addresses that appear in inputs (Step 2.2). An optional
change heuristic additionally links the change address with the first input address (Step
2.3). After Step 2, all addresses that are likely controlled by the same entity are linked in
the Union-Find data structure. In the final Step 3, BlockSci persists the Union-Find data
structure to multiple files on disk. The first file contains all sorted addresses, grouped by
cluster, i.e., all addresses of the first cluster are stored after each other, followed by the
addresses of the second cluster etc. The second file maintains an index from the cluster
number to the offset of the cluster’s first address in the first file. The last file maintains
the reverse index – from addresses to clusters. Listing 2.7 shows how to create and access
an address clustering with BlockSci.

17Section 2.2.1 covers address clustering.

32

Figure 2.14: BlockSci’s single-chain clustering

Program: Clusterer

TX

HDD: BTC parsing

A1 A2 A3 A4 A5 A6 A7 A8 A9 ...Union-Find data structure

TX is-coinjoin

no

yes

skip TX

Input: A2

Input: A4

Output

2.1

TX

Input: A5

2.2

Address

HDD: BTC clustering

Address index (addr. num. → cluster num.): A1 → 0, A2 → 1, A3 → 2, ...

Cluster data: (A1), (A2, A4, A5), (A3), (A6), (A7), (A8), (A9), ...

Cluster index (cluster num. → first addr.): 0 → A1, 1 → A2, 2 → A3, ...

1
Initialize Union-Find

structure with addresses

2 Process transactions Link addresses

using multi-input heuristic

2.3
change heuristic

(optional)

Serialize clustering to disk3

Listing 2.7: Creating and accessing an address clustering using the Python interface
import blocksci
chain = blocksci.Blockchain("/btc/config.json")

cluster_manager = blocksci.cluster.ClusterManager.create_clustering(
"/btc/clustering-output", # clustering output path
chain # chain object to cluster from

)

addr = chain.address_from_string("1G8veZsDpXCVn5m2xg12RKAuWNiJtXYyyw")
cluster = cluster_manager.cluster_with_address(addr)
cluster.address_count() # number of addresses in cluster

33

3 Generalizing BlockSci to Forked Ledgers

In this section we first set the scope and define requirements for the new multi-chain
mode. Then we cover all required changes in detail and outline architectural choices. We
end with an evaluation of the new mode and a discussion of limitations and future work.

3.1 Requirements
We start by gathering the requirements to improve BlockSci’s cross-chain analysis support
for forked ledgers. Cross-chain analyses combine the data of multiple chains in a single
analysis. This allows to extract new insights which would not be possible by looking
at the chains individually. Forked chains provide an effective and powerful data source
for cross-chain analyses due to their shared history. We identify two main challenges
when performing cross-chain analyses. First, the already high memory requirement of
single-chain analyses is further increased with every additional chain. For example, the
optimized BTC transaction data (excluding address data) has almost 80 GB as of Dec
2019. Additionally loading BCH’s transaction data with 45 GB increases the memory
requirement by more than 50% – and therewith also the cost of the analysis. For forked
ledgers a large part of this increase may be redundant due to the shared history. In the
case of BCH, almost 90% or 40 GB are redundant and only 5 GB constitute relevant new
data. Thus, there is great potential to save memory by sharing common data between
chains. The second challenge we see is accessing and combining the data of multiple chains
efficiently. Cross-chain analyses are most useful when the analysis platform provides
means to query the data relationships between chains. Let us look at some examples:
given an address, an interesting cross-chain query might be to retrieve the balance of the
address on multiple chains. Balance calculation requires to fetch the received outputs
of the address per chain, which constitutes another interesting query. Similarly, given a
pre-fork UTXO, the analyst might want to query on which chains this output has been
spent1. This challenge of data retrieval is very broad and it exceeds the scope of this
work to implement a comprehensive cross-chain query API.

3.1.1 Scope & Contribution
The overall objective of this work is to improve BlockSci’s support for cross-chain
analyses. We limit the scope to forked ledgers, as they provide valuable data and allow
to significantly optimize the memory footprint. We see our contributions as a first step
towards better cross-chain support. In this work we focus on creating a solid foundation

1Recall from Section 2.1.3 that pre-fork UTXOs can be spent in both the parent and the forked chain.

34

that can be improved in the future. We do not provide new API methods to access
data across chains, like the two example queries given above2 – this is planned as future
work. Instead, we aim to provide the same analysis experience and interface as the
current BlockSci version. Every chain is represented via a single object that provides
access to data using the existing API. Our main contributions are that 1) addresses
are deduplicated, and thus, compatible across chains; and 2) common data between
chains is shared in memory. The cross-chain address deduplication allows to utilize the
links between forked chains with the existing single-chain API. For example, the analyst
can retrieve the same address from both chains and then compare the activity on each
chain. Based on this scope we identified the following functional and non-functional
requirements for the new multi-chain mode. The key words “MUST”, “REQUIRED”,
“SHOULD”, “SHOULD NOT”, “MAY”, and “OPTIONAL” in Sections 3.1.2 and 3.1.3
are to be interpreted as described in RFC 2119 [42].

3.1.2 Functional Requirements
1. Normalized addresses: All addresses MUST be deduplicated across chains. The

address representation MUST be compatible across chains. For example, the
address with ID 1 MUST correspond to the same underlying address on all chains
of a multi-chain parsing. This is an essential requirement for novel cross-chain
analyses, such as cross-chain address clustering (Section 4).

2. Flexible configuration: The config file MUST allow to define a linear sequence of
chains, i.e., one root chain and an arbitrary number of forked chains. The individual
fork heights MUST be configurable by the user. For example, a configuration of
(Bitcoin 478,558←−−−− Bitcoin Cash 556,766←−−−− Bitcoin SV) MUST be possible.

3. BTC and BCH support: The blockchains Bitcoin and Bitcoin Cash MUST be
supported and tested. Adding future support for other blockchains SHOULD be
considered when making design choices. Support for chains other than BTC and
BCH is OPTIONAL.

4. Anticipate cross-chain queries: It is planned to add a cross-chain API in the
future. All design choices MUST be made with this goal in mind, i.e., common
cross-chain queries SHOULD be considered in the new architecture. For example,
indices SHOULD be combined and shared across chains to retrieve data for multiple
chains using a single query. Adding new methods to query data cross-chain is
OPTIONAL and out of scope.

3.1.3 Non-Functional Requirements
1. Optimize memory consumption: The memory footprint of analyses MUST

be optimized by sharing data that is common among the configured chains. In
particular, identical pre-fork blocks and address data MUST be shared in memory.

2An exception are the cross-chain clustering methods introduced in Section 4.

35

The memory footprint SHOULD be considered for all design choices, e.g., when
changing data structures.

2. Maintain high performance: BlockSci’s high performance SHOULD be main-
tained to the extend possible, especially in single-chain mode. Also the new
multi-chain mode SHOULD offer a similarly high performance.

3. Backwards compatibility: Changes to the end-user Python interface SHOULD
NOT break existing analyses, i.e., backwards compatibility SHOULD be maintained
wherever possible. Backwards compatibility of existing parsings is OPTIONAL – a
full reparse MAY be needed to use the extended BlockSci version.

4. Extensibility: It is planned to add a cross-chain API in the future. All design
decisions SHOULD be made with this goal in mind to ensure extensibility. This
includes that the already highly complexity of BlockSci SHOULD NOT be signifi-
cantly increased by the new multi-chain mode. The multi-chain mode SHOULD
reuse existing single-chain procedures wherever possible.

3.2 Required Changes
In the following we give a brief overview of the required changes to fulfill the requirements.
Figure 3.1 shows BlockSci’s architecture (cf. Figure 2.10) and the needed modifications
per component. We cover each component in detail in the subsequent sections.

Figure 3.1: Overview of all required changes per component

Parser Data layout Analysis library

Config file

support links between chains

multi-chain mode

cross-chain address

de-duplication

chain-specific data

shared data

(stored in root directory)

handle new layout

share common data

in memory

1. Config file: BlockSci uses a separate config file and data directory for every chain.
We stick to this design and extend the config file to allow links between multiple
forked chains. The data directory of the root chain gets a special role. It stores
common data that can be shared across chains, e.g., the deduplicated address data.

2. Data layout: BlockSci’s existing data layout is optimized for single chains. Several
changes to this layout are needed to efficiently store forked chains. We classify

36

all blockchain data as shared, i.e., valid across chains; or chain-specific, i.e., only
valid for a single chain. The new layout reflects this classification to allow shar-
ing data across chains in memory. Other changes are needed where BlockSci’s
existing fixed-size format does not permit to store data for multiple chains. The
AddrOutputsIndex RocksDB index also needs modification to store data of multiple
chains. The new data layout is used in both single- and multi-chain mode to avoid
the maintenance of two separate layouts.

3. Parser: A new multi-chain mode is added to the parser. It parses multiple chains
using a combination of existing single-chain methods. Reusing single-chain code
reduces the required changes and minimizes additional complexity. The new mode
handles the deduplication of addresses across chains. The parser also needs adaption
to create output according to the new layout in both single- and multi-chain mode.

4. Analysis library: The analysis library is changed to correctly load and access
the new layout. Identical blocks are loaded only once and the library provides the
abstraction of a full chain for each blockchain in a multi-chain configuration.

3.2.1 Config File
The existing BlockSci version uses a separate output directory and config file for every
chain (Section 2.3.1). We adhere to this design for the multi-chain mode, but make two
modifications. First, the config file needs extension to allow links between chains. We
add two new options to the config’s chainConfig section: parentChainConfigPath and
firstForkedBlockHeight, as shown in Listing 3.1. Forked chains link to the config file
of their parent chain via parentChainConfigPath. This approach allows an arbitrary
number of forked chains to be linked. An empty parentChainConfigPath setting denotes
the last (=parent or root) chain of a multi-chain config. The firstForkedBlockHeight
setting specifies the block height of the first forked block, e.g., 478,559 for Bitcoin Cash.
Second, we change the role of the data directory for the root chain. This directory

does not only store root chain data, but also data that can be shared across chains. For
example, the deduplicated address data for all chains is only stored in the directory of
the root chain. For forked chains, the analysis library transparently redirects access to
shared data to the directory of the root chain. As a consequence, all data directories
of a multi-chain configuration belong together, i.e., a forked chain can not be loaded if
the directory of the root chain is not available. The role of the root directory and the
mechanism to share data across chains is covered in detail in Sections 3.2.3 and 3.2.4.

37

Listing 3.1: Chain config file of Bitcoin Cash in a multi-chain configuration
{

"chainConfig": {
"coinName": "bitcoin_cash",
"dataDirectory": "/bch/",
"parentChainConfigPath": "/btc/config.json",
"firstForkedBlockHeight": 478559,
"pubkeyPrefix": [0],
"scriptPrefix": [5],
"segwitActivationHeight": 481824,
"segwitPrefix": "bc"

},
"parser": {

"disk": {
"blockMagic": 3652501241,
"coinDirectory": "/bitcoin_cash_node_data",
"hashFuncName": "doubleSha256"

},
"maxBlockNum": 501951

},
"version": 5

}

3.2.2 Data Layout
BlockSci’s existing data layout is optimized to store data of a single chain only (Sec-
tion 2.3.2). A naive solution to support multiple forked chains is to use the same layout
and separately store each chain in its entirety. However, this results in a lot of redundant
data. It also complicates data sharing: while raw pre-fork blockchain data is identical
across forked ledgers, the optimized layout of BlockSci is not. One such instance are links
from pre-fork data to post-fork data. For example, the link from every output to the
transaction that contains the spending input (Output.spendingTxNum). Even though
the raw output in the blockchain is identical across chains, this link can legitimately
differ between chains, as pre-fork UTXOs can be spent post-fork in both the parent and
the forked chain. In the following, we use the term “chain-specific” to refer to such cases
where data is only valid for a single chain. The given example is just one instance where
the existing data layout is insufficient for the new multi-chain mode.

Thus, we need to change the existing data layout to meet our requirements. It should
efficiently store data of multiple forked chains and facilitate sharing data in memory. The
new layout should be usable for both single- and multi-chain mode. This allows that the
parser can follow a similar logic in both modes to minimize complexity. We make several
modifications to the existing data layout (cf. Figure 2.11 in Section 2.3.2). Figure 3.2
shows the updated data layout and highlights all changes. Each modification (A, B, and
C) is covered in detail below. A) and B) are cases where chain-specific fields require to
hold separate values per chain, but BlockSci’s fixed-size structs can only hold values for
a single chain. We solve this issue by changing the data layout to store chain-specific
fields separately. C) covers the RocksDB-based indices. We add a chain identifier field to
the AddrOutputsIndex to allow storing data for multiple chains.

38

Figure 3.2: Required changes to the data layout of BlockSci. The colors represent
additions (green) and deletions (red).

Address Data

Type: memory-mapped files

ScriptHeader

(fixed size)

txFirstSeenuint32

txFirstSpentuint32

typesSeenuint32

Pubkey

(fixed size)

txFirstSeenuint32

txFirstSpentuint32

typesSeenuint32

uint160 pubkeyHash

PubKey pubkey

union

hasPubkeybool

ScriptHash

(fixed size)

uint160 hash160

uint256 hash256

union

wrappedAddressAddr

isSegwitbool

Multisig

(variable size)

muint8

nuint8

addressesaddrs

NonStandard

(variable size)

scriptDatavar

Raw

(variable size)

rawDatavar

Transaction Data

Type: memory-mapped files

RawBlock

(fixed size)

blocksFile

firstTxIndexuint32

numTxesuint32

heightuint32

hashuint256

versionint32

timestampuint32

bitsuint32

nonceuint32

realSizeuint32

baseSizeuint32

coinbaseOffsetuint64

RawTransaction

(variable size)

tx_dataFile

realSizeuint32

baseSizeuint32

locktimeuint32

inputCountuint16

outputCountuint16

array of Inout

(inputs)

spentTxNumuint32

addressNumuint32

addressType4 bit

value60 bit

array of Inout

(outputs)

spendingTxNumuint32

addressNumuint32

addressType4 bit

value60 bit

TxHash

(fixed size)

tx_hashesFile

txHashuint256

PreForkSpendingTx

(fixed size)

pre_fork_lin...File

spendingTxNumuint32

A

Indices

Type: RocksDB databases

tx hash → tx number1: TxHashIndex

address identifier → address number

 ∟e.g. pubkey, pubkey hash, script hash etc.

2: AddressIndex

(addr. num., chainId) → outp. sent to addr.3: AddrOutputsIndex

nested address num. → wrapping addr. num.4: NestedAddrsIndex

Parser State

Type: custom serialized data structures (eg. google::dense_hash_map)

AddrMultiUseMap

address identifier → address number

 ∟e.g. pubkey, pubkey hash etc.

AddrBloomFilter

address identifier → seen (yes/no)

 ∟e.g. pubkey, pubkey hash etc.

UTXOCache

(tx hash, output number) → tx number

B

C

A) Outputs: Link to Spending Transaction

BlockSci links every spent output with the transaction that contains the spending input.
The fixed-size struct for outputs can only store a single value in the Output.spendingTx-
Num field. However, every pre-fork UTXO can be spent post-fork in both the parent
and the forked chain. Each fork thus gets a separate memory-mapped flat file that
contains the spending transactions’ IDs for all outputs created before the fork – see
PreForkSpendingTx in Figure 3.2. The parser creates this file during the parse process.
The analysis library memory-maps the file and takes care of returning the correct values.

The file stores the spending transaction numbers for all pre-fork outputs. For Bitcoin
Cash, this corresponds to roughly 2.8 GB of data (4 bytes3 × 660 million BTC pre-fork
outputs). We could optimize and only store the values for “unspent-at-fork-height”
outputs. That corresponds to roughly 55 million (8%) of all outputs at the fork height of
Bitcoin Cash. This alternative approach requires a data structure that supports fast point
queries (by output number), e.g., a hash map. BlockSci uses Google’s dense_hash_map
[43] for serializable hash maps. It has a memory overhead factor of 4 times the size of the
contained data. The memory requirement would roughly be 4 bytes × 55 million outputs
× 4 overhead factor = 900 MB, i.e., only 30% of the memory-mapped file approach.
However, using a hash map has multiple disadvantages. First, elements are in random
order instead of contiguous, which results in decreased performance due to worse locality
of reference. Second, the hash map is fully loaded into memory (heap) on initialization.
It can not be loaded on demand and the operating system can not page out data if it
runs out of memory. Third, it is more complex to implement. Thus, we decided to use a
memory-mapped file and accept the higher memory requirement.

B) Address Metadata

BlockSci supports five common address types and uses a separate struct for each type
(Pubkey, ScriptHash etc.), see Section 2.3.2. Every struct has three common metadata
fields that store when the address was first seen (txFirstSeen), spent (txFirstSpent),
and which types were seen (typesSeen). Additionally, each struct has individual data
per address type, e.g., the public key for P2PK addresses. While the individual data
is valid across chains, the metadata fields may differ between chains. For example, an
address might be first seen in different transactions on the parent and forked chain.
We solve this issue by splitting all address type structs in two separate structs. The

three common metadata fields are moved to a new struct called ScriptHeader. It is
stored in separate memory-mapped files per type and chain. Figure 3.3 illustrates this
modification for the Pubkey struct. These changes allow to store and load data that is
valid across chains only once – in the directory of the root chain. The chain-specific
metadata fields are stored separately for every chain in the data directory of the respective
chain. The analysis library manages the access and retrieves metadata from the directory
of the chain that is currently accessed.

3sizeof(Output.spendingTxNum) = 4 bytes

40

Figure 3.3: All address type structs (here: Pubkey) are split in two structs to separately
store shared and chain-specific data.

Pubkey

txFirstSeenuint32

txFirstSpentuint32

typesSeenuint32

uint160 pubkeyHash

PubKey pubkey

union

hasPubkeybool

ScriptHeader

chain-specific

txFirstSeenuint32

txFirstSpentuint32

typesSeenuint32

Pubkey

shared across chains

uint160 pubkeyHash

PubKey pubkey

union

hasPubkeybool

Existing layout Modified layout

C) RocksDB-based Indices

BlockSci uses four indices that are stored in RocksDB databases, see Section 2.3.2. Three
of those indices contain data that is valid across chains. Thus, those indices do not need
modification. The AddrOutputsIndex stores chain-specific data, but can be modified to
hold data for multiple chains. All indices should be shared across chains, i.e., no new
database should be created for a fork. This simplifies cross-chain queries as only one
index needs to be queried instead of separate indices per chain. In the following we
discuss every index to determine required changes.

1. TxHashIndex: transaction hash → transaction number
This index maps transaction hashes to BlockSci’s internal transaction number.
Intuitively this index should be valid across chains, as transaction hashes ought to
be unique across all blockchains. However, replay attacks can cause that transactions
with the same hash appear on different chains [44]. The attacker takes a valid
transaction of the parent chain and replays it on the forked chain, or vice versa.
In either way, the spent outputs must be unspent on both chains or the replayed
transaction will be invalid. Given that the forked chain does not implement replay
protection, the result are transactions with the same hash on both chains. According
to the functional requirements in Section 3.1.2, we must support Bitcoin and Bitcoin
Cash. As Bitcoin Cash implemented replay protection from the beginning, we do
not change this index [10, Req. 6-2].
However, the index should be changed in the future to support chains without
replay protection, e.g., Bitcoin SV. This can be done by adding a chain ID field
after the transaction hash to store mappings for multiple chains. The resulting
index can be queried for a single chain (by adding the chain ID to the query).
Additionally, it also supports queries across chains with a prefix-based range query

41

using the transaction hash (without the chain ID). This is useful to find transaction
duplicates, i.e., replayed transactions. We leave this change for future work.

2. AddressIndex: address identifier → address numbers
This index maps address identifiers, e.g., public keys, to BlockSci’s internal address
number. Address identifiers like public keys are valid across chains. The same public
key can be used on multiple chains, e.g., in P2PK outputs, and it does not change.
Also the hash of the public key, e.g., in P2PKH outputs, does not change given
that the same hash function is used. A fork that changes the hash function would
complicate address deduplication and require significant changes to the multi-chain
mode. However, we are not aware of a relevant fork that changed the hash function.
Address numbers are also valid across chains due to the deduplication of the new
multi-chain parse mode (Section 3.2.3). Thus, no modifications to the index are
needed to store data for multiple chains. The index can also be shared across chains
without any changes.

3. AddrOutputsIndex: (address num., chain ID) recv.−−−→ list[outputs sent to address]
For every address, this index stores a reference to all outputs that have been sent
to this address. The data of this index is chain-specific: an address may receive
different sets of outputs on each chain. Thus, the index needs modification to be
shared across chains. We add a 1-byte chain ID field after the address number to
store entries for multiple chains. A new ChainId enum contains pre-defined IDs
for common chains, see Section 3.2.4. This allows point queries for outputs of an
address on a specific chain. It also allows prefix-based range queries to retrieve the
outputs of an address on all chains (by omitting the chain ID).

4. NestedAddrsIndex: nested address number wrapped in−−−−−−→ wrapping address number
For every P2SH address BlockSci stores a link to the wrapped address. Similarly,
every multisig address has links to the contained P2PK(H) addresses. This index
stores the reverse mapping. The new multi-chain parse mode deduplicates addresses
across chains (Section Section 3.2.3). Thus, the stored address numbers are valid
across chains and no modifications to the index are needed.

3.2.3 Parser
The parser is the most complex component of BlockSci. It converts raw blockchain data
into the optimized data layout using a multi-threaded processing pipeline (Section 2.3.3).
The existing parser creates independent parsings and processes one chain at a time
only. Several changes are needed to jointly parse multiple chains. According to our
requirements we try to keep the required changes to a minimum. This is to prevent that
the already complex parser becomes even harder to maintain. We identified three core
changes that are covered in detail in the following. First, the parser needs modification to
support the new config file. Second, as the data layout has changed, the parser needs to
create outputs according to the new layout. Third, a major modification is the addition
of a multi-chain parse mode that can parse related chains together.

42

Updated Config File

As a first step the parser is updated to support the new config file format that allows links
between chains. It is implemented as a linked list of chain configurations. Each chain
configuration links to its parent configuration. The implementation allows to distinguish
between the root and forked chains, and to get the paths of their data directories. As
mentioned in Section 3.2.1, a separate data directory is used for every chain. The directory
of the root chain is used to also store data that is shared across chains. The roles of the
directories are discussed in more detail below.

Updated Data Layout

As Section 3.2.2 covers all changes to the layout in detail, we only briefly cover some
implementation details here. It is important to understand that the updated layout is
the new default for both parse modes, i.e., the new layout fully replaces the old layout.
For example, the new file containing spending tx numbers for every output (see change A
in Section 3.2.2) is created in both parse modes, even though it is not used in single-chain
mode. Similarly, the chain-specific AddrOutputsIndex does have the chain ID field also
in single-chain mode. This adds a small storage and processing overhead, but allows that
a similar parser and analysis library logic can be used for both modes.

Multi-Chain Mode

The main modification of the parser is the addition of a new multi-chain parse mode.
Our strategy is to implement this new mode by reusing and combining the existing
single-chain logic. This way we avoid an entirely separate new mode with dedicated
logic that needs maintenance. We start with the fact that the existing parser works
incrementally. It can parse a chain up to a given block height, and continue parsing
to a higher height later. We make use of this feature for the new multi-chain mode, as
illustrated step by step in Figure 3.4. The idea is that the root chain, e.g., BTC, is
parsed first (Step 2) but only up to the fork height of its forked chain, e.g., BCH. The
resulting output is a valid parsing for BTC and BCH, as their raw data is identical up
to the fork height. Thus, we can safely copy the parser output of BTC’s data directory
into BCH’s data directory (Step 3). The parser can then sequentially continue to process
chains. First BTC is parsed up to the latest block height (Step 4), followed by BCH
(Step 5). All parsings are executed using the existing single-chain logic. This works
because all data including the parser state is copied in Step 3. Thus, when parsing BCH
in Step 5 the parser “assumes” it is continuing a previous parsing. The result are two
independent parsings of BTC and BCH up to the given block heights – something that
could be created with the existing BlockSci version as well.

43

Figure 3.4: The sequence of the parser’s new multi-chain mode.

Disk: BCH dir (bch/)

BCH-local data

TX data

Addresses (ScriptHeader)

Parser state

Disk: BTC dir (btc/)

BTC-local data

TX data

Addresses (ScriptHeader)

Parser state

Shared data

Addresses (Pubkey etc.)

Indices (RocksDB)

Program: Parser

User: Command-line

Disk: Raw blockchain data

2

copy local

pre-fork

BTC data

4 5

chain-specific

data

yes: local dir

1 . . . 478,558

478,559

478,559

. . .

. . .

no: root dir

> ./blocksci_parser /btc-bch/bch/config.json update-multiple

1

3

root-chain

no

yes: root dir

2 4

5

BCH post-forkBTC post-forkBTC pre-fork

Parse settings: root and local directories

2 4
root directory = btc/

local directory = btc/

5
root directory = btc/

local directory = bch/

The missing piece is a mechanism to share and combine data between chains, e.g., to
deduplicate addresses across chains. This is where the previously mentioned new roles
of root and forked data directories come to play. We classify all parser output data
structures as either shared, i.e., valid across chains; or chain-specific, i.e., not valid across
chains. Below we discuss the classification for relevant data structures. Based on this
classification the parser stores data in either the root directory or the local directory,
see Table 3.1. Then the parser applies a simple rule to its output: shared data (and
chain-specific data of the root chain) is stored in the root directory, and chain-specific
data of forks is stored in the respective directory of the fork. This is done by assigning

44

a root and local directory to every chain that is parsed, as shown in the bottom-right
box in Figure 3.4. For example, when BCH is parsed in multi-chain mode (Step 5), the
root path is BTC’s directory and the local path is BCH’s directory. The root chain is
an exception and has identical root and local directories. Implementing the described
rule is straightforward: using the updated config file format of Section 3.2.1, each parsed
chain has access to the root data directory and its own local directory. BlockSci’s config
classes provide methods to get the paths of the subdirectories that hold different types
of data, e.g., chain/ for transaction data, scripts/ for address data etc. We change
those methods to return either the root or the local path, depending on the type and
classification of data.
This design solves the issue of sharing data between chains during the parse process.

First, shared data of a multi-chain configuration is written to the root chain’s directory.
Second, and more importantly, the parser also reads shared data from this directory when
it continues parsing a chain incrementally (Steps 4 and 5 in Figure 3.4). For example,
the address index (AddressIndex) is shared and thus, the same database is opened for
every chain of a multi-chain configuration. This inherently solves address deduplication
across chains. For all addresses that are seen – e.g., on BTC in Step 2 – an entry is
added to the address index. The entry represents a mapping from address identifier
(e.g., the pubkey) to the internally assigned address number. When the same address
is encountered on BCH in Step 5, the previously assigned address number is retrieved
from the shared address index. The described design also allows that the multi-chain
mode is largely based upon the existing single-chain parse logic. Modifications are only
needed at the top level to orchestrate the process, as shown step-by-step in Figure 3.4.
Additionally, the configuration classes need to be changed to return the correct directory
based on the type of data.

Classification of Data: Shared or Chain-Specific

Below we discuss which types of data are shared across chains. This determines where the
parser stores the data. Shared data is stored in the root chain’s directory. Chain-specific
data is only valid for a single chain and is stored in the local directory. Note that the
classification is only relevant for the described mechanism that the parser uses for data
sharing. The analysis library also respects this classification, but implements additional
measures to improve data sharing, e.g., for identical pre-fork data.

1. Transaction data is generally chain-specific. Although pre-fork transaction data
is identical on both chains, it is currently duplicated in every fork’s data directory.
This is a consequence of copying the parent to the forked directory in Step 3 of
Figure 3.4. Step 3 is needed so that the existing single-chain mode can be used
to continue parsing with post-fork BCH data in Step 5. However, the data is only
duplicated on disk and optimizing storage consumption is not a requirement, as
disk space is cheap. The analysis library takes care of loading common pre-fork
transaction data into memory only once.

2. Address data is both shared and chain-specific, depending on the fields. The

45

metadata fields in ScriptHeader that store information about the address’ usage
are chain-specific. The address-type-specific data structures (Pubkey, ScriptHash
etc.) can be shared across chains.

3. All indices can be shared across chains as they can hold data for multiple chains
after the modification described in B) of Section 3.2.2.

4. For the parser state data sharing in memory is less important from a performance
perspective because it is only used during the parse process, but not for analyses.
The UTXOCache contains the current set of UTXOs. It must not be shared, as it
would break the parse process when pre-fork UTXOs are spent in both the parent
and the forked chain4. The AddrMultiUseMap and AddrBloomFilter are used for
address deduplication. Both could technically be shared, but we decided to not
share AddrMultiUseMap as we speculate the map might defeat its purpose when
addresses satisfy “multi-use” because they are used once in both chains. We leave
the evaluation of sharing parser state for future work.

Table 3.1: Storage location for parser output data based on the data type
Data Data structures1 Classification Directory

TX data RawBlock, RawTransaction,
TxHash, PreForkSpendingTx

chain-specific2 local

Addresses ScriptHeader chain-specific local

Pubkey, ScriptHash, Multisig,
NonStandard, Raw

shared root

Indices TxHashIndex, AddressIndex,
AddrOutputsIndex, NestedAddrsIndex

shared root

Parser state UTXOCache, AddrMultiUseMap chain-specific local

AddrBloomFilter shared root
1: As shown in Figure 3.2

2: Only relevant for the parser, the analysis library shares pre-fork data in memory.

3.2.4 Analysis Library
The analysis library is responsible for loading existing parsings and provides the end-user
interface to query data (Section 2.3.4). It manages the data access to all types of data:
transaction data, address data, and indices. Several modifications are required to support
the new multi-chain mode. First, the library needs changes to correctly access the new
data layout and share common data in memory. We discuss the required changes for

4The first spend removes the UTXO from the UTXOCache, and the query for the second spend fails.

46

different types of data. Second, the end-user API needs to be changed so that the
chain ID and name can be retrieved for every object. These API changes do not affect
backwards-compatibility.

Data Access

The new multi-chain parser mode stores shared and chain-specific data in separate
directories (Section 3.2.3). The analysis library uses a similar mechanism as the parser
to access data. A root directory and a local directory is assigned to every chain that is
loaded. The library then uses the same rule as the parser: shared data is retrieved from
the root directory, and chain-specific from the local directory. This mechanism can be
applied to single-chain parsings as well by setting the root and local directories to the
same path. While this approach already solves some data access issues, more specific
changes are required based on the type of data.

1. Transaction data: Blocks, transactions, inputs, and outputs are generally chain-
specific, except for common pre-fork data, which can be shared with the parent
chain. In-memory data sharing is implemented by transparently redirecting access to
pre-fork data to the parent directory. While we speak of a directory here, remember
that transaction data files are memory-mapped and thus, loaded into memory.
Thus, it is equally correct that all requests to pre-fork blocks and transactions are
redirected to the memory region of the parent chain. The analysis library knows the
fork block height from the config file and can derive the number of the last pre-fork
transaction. This information is used to redirect access based on the requested
block height respectively transaction number. As inputs and outputs are accessed
via the containing transaction, access to them is automatically redirected as well.
However, outputs need special treatment due to their chain-specific link to the
spending transaction and the therefore updated data layout, as described in A) in
Section 3.2.2. When an output object is instantiated, it is checked whether the
output was created before the fork. If so, the spendingTxNum value is retrieved
from the separate fork-specific PreForkSpendingTx file, while the rest of parent
chain’s output data is also valid for the forked chain. Otherwise, the output data is
read from the local directory of the fork, which contains the correct chain-specific
spendingTxNum value (as it is post-fork data).

2. Address data: In the new layout every address has chain-specific metadata
(ScriptHeader), and an individual struct per address type that is shared across
chains (Pubkey etc.). The analysis library is changed so that the chain-specific
ScriptHeader is always loaded from the local directory. The individual address
type structs are loaded from the root directory. This ensures that correct data is
retrieved based on the chain object that the request originates from.

3. Indices: The RocksDB-based indices can all be shared due to the changes described
in C) in Section 3.2.2. Thus, the parser stores them in the root directory. The
analysis library redirects access accordingly using the modified configuration classes.

47

API Changes

Section 3.1.1 limits the scope of the multi-chain mode to providing the user with an
abstraction of separate single chains using the existing single-chain API. Therefore no
additional data retrieval methods are added to the end-user API. The existing BlockSci
API does not allow to retrieve to which chain an object, e.g., an output, belongs.
The analyst has to mentally keep track of from which chain object data was retrieved.
Therefore we add a chain_id property to all objects to help the user distinguishing
between chains. The property returns the same ID that is used by the parser in the new
data layout. The chain IDs are implemented as an enum with predefined 1-byte values
for every chain and their variants, e.g., BITCOIN=1, BITCOIN_TESTNET=2 etc.

3.3 Usage
Installation

The code of this work can be found on GitHub at mplattner/BlockSci [38] in the branch
feature/fork-support, revision a178437. Installation and compilation instructions are
provided in the official BlockSci documentation [45].

Parser

Listings 3.2 and 3.3 show a sample multi-chain configuration for BTC and BCH. We
assume that both chains have their individual data directory at /btc respectively /bch.
The BCH config contains a link to the BTC config and specifies the fork height.

Listing 3.2: BTC config /btc/cfg.json

{
"chainConfig": {

"coinName": "bitcoin",
"dataDirectory": "/btc",

"pubkeyPrefix": [0],
"scriptPrefix": [5],
"segwitActivationHeight": 481824,
"segwitPrefix": "bc"

},
"parser": {

"disk": {
"blockMagic": 3652501241,
"coinDirectory": "/node/btc",
"hashFuncName": "doubleSha256"

},
"maxBlockNum": 610696

},
"version": 5

}

Listing 3.3: BCH config /bch/cfg.json

{
"chainConfig": {

"coinName": "bitcoin_cash",
"dataDirectory": "/bch",
"parentChainConfigPath": "/btc/cfg.json",
"firstForkedBlockHeight": 478559,
"pubkeyPrefix": [0],
"scriptPrefix": [5],
"segwitActivationHeight": 2147483647,
"segwitPrefix": "NONE"

},
"parser": {

"disk": {
"blockMagic": 3652501241,
"coinDirectory": "/node/bch",
"hashFuncName": "doubleSha256"

},
"maxBlockNum": 615796

},
"version": 5

}

48

https://github.com/mplattner/BlockSci/tree/a1784376ccb308015c2819dc081a271703b8c5fc

Listing 3.4 shows how to start the parser in multi-chain mode using the new update-
multiple command. The parser expects that the provided config file is from the leaf
chain, i.e., the deepest fork in the multi-chain configuration. In our example this is BCH.
The output messages reflect the multi-chain mode parsing sequence that we outline in
Figure 3.4: first BTC is parsed up to the fork height, then the output data is copied to
BCH’s directory, and in a last step the parser continues to parse BTC up to the specified
height, followed by BCH.

Listing 3.4: Creating a parsing using the new multi-chain mode
> blocksci_parser /bch/cfg.json update-multiple

-- Performing initial multi-chain parse

- Parsing bitcoin up to block height 478558
Adding 478558 blocks: done
Updating indices: done
Copying data to fork directory: done

- Parsing bitcoin up to block height 610696
Starting with chain of 478558 blocks
Adding 132137 blocks: done
Updating indices: done

- Parsing bitcoin_cash up to block height 615796
Starting with chain of 478558 blocks
Adding 137237 blocks: done
Updating indices: done

Analysis Library

The scope of this work is to provide users the known single-chain experience with a
backwards-compatible interface. Thus, the usage of the analysis library has not changed
with the introduction of the new multi-chain mode. Listing 3.5 shows how users can
individually load BTC and BCH of the created multi-chain parsing. This is done in the
same way as in the non-extended version: by instantiating a Blockchain object with
the path to the chain’s config file. The analysis library transparently handles sharing
data in memory. While both chains are loaded in this example, it is possible to only
load a single chain or subset of chains from a multi-chain parsing. The analysis interface
is backwards-compatible, with one minor exception described in Section 3.4.3. The
documentation for the full API can be found at [45].

49

Listing 3.5: Loading the chains of a multi-chain parsing using the Python interface
import blocksci

btc = blocksci.Blockchain("/btc/cfg.json")
bch = blocksci.Blockchain("/bch/cfg.json")

for btcBlock in btc:
for btcTx in btcBlock:

do something with the tx

for btcBlock in btc:
for btcTx in btcBlock:

do something with the tx

3.4 Evaluation
In this section we evaluate the correctness, performance, and backwards compatibility
of the created extension. For all measurements, we use Git revision 8681010 for the
non-extended version, and revision a178437 for the extended version, both in repository
[38]. Both versions are compiled with GCC 7.5 using CMake’s release build, i.e., with
most compiler optimizations turned on. All parsings are up to BTC block height 610,696
and BCH block height 615,796, corresponding to Dec 31, 2019.

3.4.1 Correctness
We evaluate the correctness of the created extension by comparing the output data of
BlockSci with and without the extension. Figure 3.5 shows the setup of the correctness
evaluation. First, a version of the parser without the extension is used to create parsings
for Bitcoin and Bitcoin Cash. We make the assumption that this parser version – prior
to our changes – creates correct results. Second, we use another version of BlockSci that
includes the extension. We create parsings for Bitcoin and Bitcoin Cash in single-chain
mode, and one parsing for both chains combined using the new multi-chain mode. Third,
we use a custom integrity check program to compare the results. It is not possible to
compare the parser output files directly because they include struct padding, which is
not initialized by default and thus, contains random data. Instead, the integrity checker
loads the parsed chain and iterates all transactions. It calls all data retrieval methods
of blocks, transactions, inputs, outputs, and the addresses referenced by them. The
return values of these methods are sequentially fed into a hash function. The result is a
single SHA256 hash that uniquely identifies the parser output data. We compare the
(non-extended and extended version) hashes of the same chain to evaluate if the results
haven’t changed and thus, are correct. Table 3.2 shows the results of this process. The
hashes of the non-extended and the extended version match for both BTC and BCH.
This indicates that the extended BlockSci version produces correct results.

50

https://github.com/mplattner/BlockSci/commit/86810100937ea691189ac9116b5cb12ae89f9eb7
https://github.com/mplattner/BlockSci/commit/a1784376ccb308015c2819dc081a271703b8c5fc

Figure 3.5: Correctness evaluation setup. Solid lines represent the creation of parsings,
and dashed the comparisons of those.

Integrity Checker

BlockSci Parser

without extension

BTC

BCH

BlockSci Parser

with extension

BTC

single-chain

BCH

single-chain

BTC

multi-chain

BCH

multi-chain

Table 3.2: Result of the integrity check to evaluate correctness.
Chain1 Version Parse Mode Hash2 Result

BTC
w/o extension single-chain 1798777da0...5497a681da reference

w/ extension single-chain 1798777da0...5497a681da !

multi-chain 1798777da0...5497a681da !

BCH
w/o extension single-chain 605d6a1897...6242fd0fa2 reference

w/ extension single-chain 605d6a1897...6242fd0fa2 !

multi-chain 605d6a1897...6242fd0fa2 !

1: maxBlockNum setting: 610,696 for BTC, 615,796 for BCH, corresponding to Dec 31, 2019
2: Transactions (API w/ address strings) output of the integrity checker

A limitation of the correctness evaluation is that not all parser output data is included.
We do not include all data of the individual structs per address type (Pubkey etc.). Their
data might legitimately differ between single- and multi-chain parsings. For example,
the public key of a P2PKH address might be revealed due a spend on BTC, but not on
BCH. As public keys are shared across chains in multi-chain mode, the public key is also
available when loading BCH from a BTC-BCH multi-chain parse. On the other hand, a
single-chain BCH parsing does not include the revealed public key for the given P2PKH
address. In consequence, comparing hashes of a BCH single-chain and a BCH multi-chain
parsing would result in erroneously reported inconsistencies. Thus, for addresses we
only include the chain-specific ScriptHeader data, and the address string. Including
the address string instead of the raw public key or public key hash mitigates above

51

limitation. The address string does not change regardless of whether the public key of
the address has been revealed. Thus, it reflects whether the stored data (public key hash
or public key) is correct. This issue causes that some address data is not hashed by
the integrity checker: Pubkey.hasPubkey, ScriptHash.{wrappedAddress,isSegwit},
Multisig.addresses, NonStandard.scriptData, and Raw.rawData.

3.4.2 Runtime Performance
According to the non-functional requirements in Section 3.1 the high performance of
BlockSci should be maintained to the extend possible. We evaluate this requirement
with several benchmarks on the analysis library and the parser. All measurements are
performed on a bare-metal machine with a quad-core CPU, 64 GB of memory, and a
high-performance SSD5. The used operating system is Ubuntu 18.04, which is installed on
a separate SSD. We flush the operating system’s page cache before starting benchmarks6.

Analysis Library

The performance of the analysis library is evaluated by running various sample queries
with the extended and the non-extended version of BlockSci. We use eight tests that
implement common real-world queries. Table 3.3 gives an overview of the tests. The
upper part shows which data structures every tests iterates, together with the iteration
order. The listings below provide Python-like pseudocode7 for every test. The tests are
evaluated for the same six parsings as shown in Figure 3.5 for the correctness evaluation.
Table 3.4 shows the execution time in wall clock time averaged over 10 runs for all
relevant combinations of parsings.

5CPU: Intel Xeon E3-1275 v5 with 3.6 GHz, RAM: 64 GB DDR4-2400 with ECC, Disk: local NVMe
SSD with 3.84 TB and read speeds up to 3000 MB/s

6Using this command: sync && echo 3 > /proc/sys/vm/drop_caches
7The C++ code of all tests is available in the benchmark/ folder of the Git revisions given in Section 3.4.

52

Table 3.3: Tests to evaluate the runtime of the analysis library

Te
st
1:
ma

xIn
pu
t

Te
st
2:
ma

xO
utp

ut

Te
st
3:
ma

xF
ee

Te
st
4:
ma

xF
eeR

and

Te
st
5:
non

Zer
oL
ock

tim
e

Te
st
6:
non

zer
oL
ock

tim
eR
and

Te
st
7:
zer
oC
onf

Ou
tpu

t

Te
st
8:
add

rR
ece

ive
dV
alu

e

Accessed data

Block • • • • •
Transaction • • • • • • •
Input • • •
Output • • • • •
Address •
AddressIndex1 •

Order
Sequential • • • • • •1
Random2 • •
Graph traversal3 •

1: RocksDB index, 2: access TXes in random order, 3: via Output.spending_tx

Test 1: maxInput
find maximum input value
cmax = 0
for block in chain:

for tx in block:
for input in tx.inputs:

cmax = max(cmax, input.value)

Test 2: maxOutput
find maximum output value
cmax = 0
for block in chain:

for tx in block:
for output in tx.outputs:

cmax = max(cmax, output.value)

Test 3: maxFee
find maximum fee
cmax = 0
for block in chain:

for tx in block:
cmax = max(cmax, tx.fee)

Test 4: maxFeeRand
same as Test 3, but random tx traversal
cmax = 0
for tx_num in random_tx_nums:

tx = Transaction(tx_num)
cmax = max(cmax, tx.fee)

Test 5: nonZeroLocktime
count txes with locktime > 0
count = 0
for block in chain:

for tx in block:
count += (tx.locktime > 0)

Test 6: nonzeroLocktimeRand
same as Test 5, but random tx traversal
count = 0
for tx_num in random_tx_nums:

tx = Transaction(tx_num)
count += (tx.locktime > 0)

Test 7: zeroConfOutput
count outputs that are created and
spent in the same block
count = 0
for block in chain:

for tx in block:
for output in tx.outputs:

if output.is_spent:
s_tx = output.spending_tx
if s_tx.height == block.height:

count += 1

Test 8: addrReceivedValue
calculate received value of a
gambling service address
address = Address(

"1dice97ECuByXAvqXpaYzSaQuPVvrtmz6"
)
total = 0
for output in address.outputs:

total += output.value

53

Table 3.4: Results of the runtime evaluation for the analysis library

Test w/o extension w/ extension Change4 (%)
Parsing1 Mean2 Parsing1,3 Mean2 Parsing Chain Test

1. maxInput
BTC 7.587 BTC sc 7.545 -0.55% -0.49%

-0.47%BTC mc 7.554 -0.43%

BCH 4.346 BCH sc 4.327 -0.43% -0.46%BCH mc 4.325 -0.48%

2. maxOutput
BTC 8.039 BTC sc 7.831 -2.59% -2.54%

-2.56%BTC mc 7.839 -2.49%

BCH 4.634 BCH sc 4.515 -2.57% -2.57%BCH mc 4.514 -2.58%

3. maxFee
BTC 9.347 BTC sc 10.641 13.84% 13.97%

14.63%BTC mc 10.664 14.09%

BCH 5.313 BCH sc 6.121 15.20% 15.29%BCH mc 6.131 15.38%

4. maxFeeRand
BTC 311.834 BTC sc 329.115 5.54% 5.91%

8.35%BTC mc 331.405 6.28%

BCH 174.729 BCH sc 188.147 7.68% 10.80%BCH mc 199.050 13.92%

5. nonz.Locktime
BTC 5.110 BTC sc 5.156 0.91% 0.11%

-0.21%BTC mc 5.075 -0.69%

BCH 2.992 BCH sc 2.972 -0.68% -0.53%BCH mc 2.980 -0.39%

6. nonz.Lockt.Rand
BTC 244.627 BTC sc 268.264 9.66% 9.99%

17.43%BTC mc 269.862 10.32%

BCH 137.857 BCH sc 153.804 11.57% 24.87%BCH mc 190.472 38.17%

7. zeroConfOutput
BTC 151.647 BTC sc 166.336 9.69% 9.92%

14.42%BTC mc 167.032 10.15%

BCH 80.044 BCH sc 88.135 10.11% 18.92%BCH mc 102.245 27.74%

8. addrReceivedVal.
BTC 0.387 BTC sc 0.398 2.98% 2.60%

3.37%BTC mc 0.395 2.22%

BCH 0.382 BCH sc 0.402 5.19% 4.15%BCH mc 0.394 3.10%

Average change5
BTC – BTC sc – 4.93% 4.93%

6.87%BTC mc – 4.93%

BCH – BCH sc – 5.76% 8.81%BCH mc – 11.86%
1: maxBlockNum setting: 610,696 for BTC, 615,796 for BCH, corresponding to Dec 31, 2019

2: Average execution time of 10 runs in wall clock seconds, 3: sc/mc = single-chain/multi-chain parsing
4: Relative change w/o ext. to w/ ext.: per parsing, avg. over chain (sc and mc), avg. over test

5: Average change over all tests

54

We observe an average slowdown of 6.87% over all parsings and tests. The tests
maxInput, maxOutput, maxFee, and nonzeroLocktime implement the common use-case
of sequentially iterating a subset of (blocks, transactions, inputs, and outputs). All but
maxFee run marginally faster with the extended version: maxInput (-0.47%), maxOutput
(-2.56%), and nonzeroLocktime (-0.21%). The maxFee test is 14.63% slower with the
extended version. At the time of writing we have no explanation for this significant
slowdown. After all, this test is largely a combination of maxInput and maxOutput. We
plan to further investigate and profile this test in the future.
We observe two more tests that are on average significantly slower with the ex-

tended version: nonzeroLocktimeRand (17.43%), and zeroConfOutput (14.42%). The
nonzeroLocktimeRand test randomly accesses transactions by transaction number. In
the extended version this requires to check whether the number is pre- or post-fork in
order to redirect access to the correct memory location (Section 3.2.4). We conjecture
that this check causes a large portion of the observed slowdown. For the BCH multi-chain
parsing we observe the largest slowdown (38.17%), as all pre-fork transactions are actually
redirected to the parent chain. This check also causes maxFeeRand to be 8.35% slower
on average (13.92% for BCH multi-chain). Sequential iterations of transactions (using
blocks) are not affected by this check as then it is only executed once per block.
The zeroConfOutput test is 14.42% slower on average. It sequentially accesses all

transaction outputs and retrieves the spending transaction for every output., i.e., the
transaction graph is traversed. Such graph traversal queries are expected to be slower
with the extended version. This is due to the additional check whether the spending
transaction number needs to be fetched from the separate pre-fork file (Section 3.2.2).
Overall, we observe an average slowdown of 4.93% and 5.76% for single-chain BTC

respectively BCH parsings. This largely fulfills our requirement to maintain the high single-
chain performance of BlockSci. However, we see several opportunities for improvement.
For example, some of the multi-chain mode checks can be skipped in single-chain mode.
We plan to perform additional benchmarks and optimizations in the future.

Parser

The performance of the parser is evaluated by creating multiple parsings and measuring
the runtime. We create the same parsings as shown for the correctness evaluation, see
Figure 3.5. Table 3.5 shows the average runtime over 3 executions in wall clock minutes.

55

Table 3.5: Results of the runtime evaluation for the parser
without extension with extension Change(%)

Parsing1 Runtime2 Parsing1 Runtime2

BTC 228.7 BTC single-chain 285.5 24.85%
BCH 81.7 BCH single-chain 104.8 28.33%

BTC/BCH3 310.3 BTC/BCH multi-c. 356.3 14.80%

avg. 22.66%
1: maxBlockNum setting: 610,696 for BTC, 615,796 for BCH, corresp. Dec 31, 2019

2: Average execution time of 3 runs in wall clock minutes
3: Accumulated time to parse BTC and BCH: 228.7 + 81.7

Using the extended version we can observe an increase in parser runtime of 22.66% on
average. We conjecture that this is due to the changed data layout that is used in both
single- and multi-chain mode. The extended parser uses the same logic in both modes
and thus, also performs multi-chain mode tasks for single-chain parsings. However, we
do not consider this slowdown a major limitation. After performing the initial parse,
updating a parsing with new blocks is near-instantaneous. We strongly recommend using
SSD storage as we saw an up to ten-fold increase in parse runtime with HDD storage.

3.4.3 Backwards Compatibility
According to the non-functional requirements in Section 3.1, the end-user Python API
should remain backwards compatible, i.e., our changes should not break existing code.
At the same time, we limited the scope to providing the existing single-chain API to
the user, without adding or changing methods for cross-chain data retrieval. Given this
scope, maintaining backwards compatibility is straightforward.
Only a single method in Address needs an updated return type due to the cross-

chain address deduplication. Recall that every address has a link (txFirstSeen) to the
transaction where the address was first seen. BlockSci exposes this link to the user via
Address.first_tx to get the referenced transaction. The new data layout stores this
link separately for every chain, as time of first address usage may differ across chains (see
B in Section 3.2.2). An address may also be unseen on one of the chains in a multi-chain
configuration. In this case Address.first_tx can not return a Tx object. Thus, the
return type of this method needs to be changed from Tx to Optional[Tx], i.e., it can
also return Python’s None type. This change does not break existing analyses as long
as the code is used with a single-chain parsing. A single-chain parsing inherently has a
txFirstSeen value for every address. Existing code that uses Address.first_tx and is
executed on a multi-chain parsing will require minor changes. That said, the Python
API of the extended BlockSci version should be fully backwards compatible with existing
analyses.

56

3.5 Discussion
In Section 3 we covered the extension of BlockSci to better support cross-chain analyses
of forked ledgers. We added a new multi-chain mode that allows to jointly parse and
analyze forked chains. Common data between chains is shared in memory and addresses
are deduplicated across chains. In Section 3.4.1 we evaluated the result for correctness by
comparing the outputs of the extended and non-extended version. The results indicate
that the extension works correctly. The extension is a valuable contribution to BlockSci
and provides a solid foundation for cross-chain analyses that can be improved in the
future.

Fulfillment of Requirements

In Section 3.1.2 we defined four functional requirements (FR) and four non-functional
requirements (NFR). In the following we briefly discuss the fulfillment of these require-
ments. We are aware that the specification of some requirements is not precise enough
to rigorously assess the fulfillment. For example, it is difficult to validate if “all design
choices were made with [some goal] in mind” (FR 4, NFR 1, NFR 4) – only we can (sub-
jectively) answer this question. Other requirements like maintaining the high performance
of BlockSci (NFR 2), or maintaining backwards compatibility (NFR 3) were evaluated
in Section 3.4. That said, in Table 3.6 we rate the fulfillment of every requirement to
the best of our knowledge. Below we discuss requirements that are difficult to verify
objectively.

Table 3.6: Fulfillment of the functional and non-functional requirements in Section 3.1
Type No. Requirement Priority Result

Functional
requirements

1. Normalized addresses MUST !1

2. Flexible configuration MUST !1

3. BTC and BCH support MUST !1

4. Anticipate cross-chain queries MUST !3

Non-functional
requirements

1. Optimize memory consumption MUST !3

2. Maintain high performance SHOULD !2

3. Backwards compatibility SHOULD !2

4. Extensibility SHOULD !3

1: can be verified by using the new feature, 2: was verified in Sections 3.4.2 and 3.4.3
3: is difficult to verify objectively and thus, is discussed below

1. FR 4: We anticipated several cross-chain queries when making design choices.
The design of the AddrOutputsIndex index allows to query the received outputs
of an address for a specific chain, for multiple, or for all chains. This allows many
interesting cross-chain queries, e.g., calculating the balance of an addresses on

57

multiple chains. The TxHashIndex is planned to be extended in the future so that
duplicate transactions across chains can be retrieved. The design of the link from
outputs to the spending transaction allows to retrieve all transactions across chains
that spend a pre-fork output.

2. NFR 1: We did optimize the design for a low memory footprint. Identical pre-fork
data is only loaded into memory once and is shared between chains. Address data
is deduplicated and also shared in memory. Thus, when loading multiple chains
the potential amount of data in memory is significantly lower. The analysis library
heavily uses memory-mapped I/O to load files, allowing the operating system
to swap memory pages at any time. BlockSci can thus run on machines with
insufficient memory, albeit with significantly decreased performance. This makes it
difficult to reliably measure the difference in memory consumption across versions.
We conjecture the runtime might be a useful proxy that can indicate extensive
swapping.

3. NFR 4: We made design choices with the consideration that a cross-chain API
will be added in the future (also see FR 4 above). We tried not to significantly
increase the complexity of BlockSci by reusing existing methods wherever possible.
This worked well for the new multi-chain mode of the parser, which is largely based
on existing single-chain code.

Limitations

BlockSci supports Bitcoin and blockchains that use a similar format. These chains can
have minor differences, e.g., in the consensus rules, without causing incompatibilities with
BlockSci. However, we found an interesting edge-case that is currently not supported by
the new data layout. It affects Bitcoin and Bitcoin Cash when they are parsed together
in multi-chain mode. It causes the Bitcoin parsing to be incorrect for a negligible number
of pre-fork P2SH addresses. Recall that P2SH addresses can wrap any other address type
(Section 2.1.4). On Bitcoin there exist some pre-fork UTXOs that wrap a Segregated
Witness (SegWit) address. We have not covered SegWit so far, but for now it is enough
to know that it is a Bitcoin enhancement (BIP141 [46]) that changes the transaction
structure and adds new address types, e.g., Pay-to-Witness-Public-Key-Hash (P2WPKH).
SegWit was activated in Bitcoin at August 23, 2017, i.e., after the Bitcoin Cash fork.
We conjecture the observed pre-fork P2SH-wraps-P2WPKH outputs were created by
developers for testing purposes. Due to the nature of the SegWit implementation, on
Bitcoin Cash these outputs can be spent by anyone who knows the redeem script that
matches the hash in the P2SH output. The redeem script is revealed when the pre-
fork P2SH-wraps-P2WPKH output is spent on Bitcoin. Then anyone can take the
redeem script and spend the output on Bitcoin Cash using a non-standard script. The
parser detects the wrapped address on Bitcoin as P2WPKH, but as non-standard on
Bitcoin Cash, i.e., as two distinct addresses – which is technically correct. However,
the P2SH struct is shared across chains and can only store one link to the wrapped
address in P2SH.wrappedAddress. Currently this causes the wrappedAddress value to

58

be overwritten when the non-standard BCH input is parsed. We found that this bug
affects 16 pre-fork P2SH addresses, i.e., 6×10−7% of all 27 million pre-fork P2SH addresses.
This is the number of pre-fork P2SH-wraps-P2WPKH addresses that have been spent
on BTC as of Dec 2019. More addresses might be affected that have not been spent yet
and thus, can not be detected. The bug did not affect the correctness evaluation because
the P2SH.wrappedAddress field is not included in the evaluation for reasons described in
Section 3.4.1. There are several options to fix or workaround this bug. However, a proper
fix needs to store the links to all wrapped addresses, and possibly introduce individual
address equivalence classes per chain. This is non-trivial and requires significant changes
to BlockSci’s data layout. We leave this fix for future work and assign low priority given
the marginal number of affected addresses.

Future Work

We see our contributions as a first step towards efficient and user-friendly cross-chain
analyses with BlockSci. Thus, we see several opportunities for future work. First, we
propose to implement a cross-chain API to query data across chains. This would allow
users to more conveniently extract information from the relationships between forked
ledgers. The challenge is to design an API that is user-friendly and compatible with
the current architecture. We suggest methods like Address.balance(chain_id) and
Address.outputs(chain_id) for addresses, and
Output.spending_tx(chain_id) for outputs are a useful addition to the current single-
chain API. Second, we see potential to further optimize the performance of our multi-chain
extension. In Section 3.4.2 we showed that some benchmarks run significantly slower
on multi-chain parsings. We propose to profile the current implementation to identify
bottlenecks and inefficiencies. For example, the analysis library currently performs some
checks in both modes although they are only required in multi-chain mode. Third, the
TxHashIndex should be adapted to support multi-chain configurations with chains that
do not implement replay protection. Parsing such chains, e.g., Bitcoin SV, currently
overwrites the existing (tx hash → tx number) entry for every duplicate transaction,
resulting in a corrupt parsing. We propose to add a chain ID field to the index so that it
can store entries with the same transaction hash across multiple chains.

59

4 Application: Cross-Chain Address
Clustering

This section covers the implementation of a novel address clustering technique using the
extended BlockSci version of Section 3. First we present the idea of cross-chain address
clustering. Then we cover its implementation using BlockSci. We end with the analysis
of a cross-chain clustering of Bitcoin and Bitcoin Cash.

4.1 Introduction
In blockchain systems it is trivial to generate new addresses, and thus, identities. Many
wallets take advantage of this ability and create a new address for every transaction. The
motivation is to protect the privacy of the user, as reusing addresses allows to filter for
transactions of a specific user. Address clustering is an established technique that uses
heuristics to link addresses that are controlled by the same user (Section 2.2.1). It is
used for research, e.g., to understand trends or evaluate privacy; but also in practice,
e.g., for cryptocurrency forensics and criminal investigations. BlockSci’s new multi-chain
mode of Section 3 enables memory-efficient and user-friendly analyses of data across a
parent chain and its forks. We utilize the new multi-chain mode to implement a novel
clustering technique that includes data of multiple chains: cross-chain address clustering.
The technique uses the known heuristics: multi-input and change. These heuristics
are applied on the transactions of multiple chains to create an enhanced clustering
for the target chain. Figure 4.1 illustrates this new technique. The two upper graphs
show single-chain clusterings of BTC and BCH, created using the established technique
described in Section 2.2.1. Cross-chain clustering merges these single-chain clusterings to
create an improved clustering. Improved means that the address graph has more edges
and thus, more links between addresses. For example, the edge between A2 and A3 is
only found in BCH and can be propagated to BTC. Adding this edge has significant
effects on the clustering: it results in the collapse of BTC’s single-chain clusters (A1, A2)
and (A3, A4) to a single cross-chain cluster containing four addresses. The propagated
edge does not only link A2 and A3, but also all addresses of the affected single-chain
clusters: (A1, A3), (A2, A4), and (A1, A4). These three links could not have been found
using Bitcoin or Bitcoin Cash alone. More formally, when two clusters C1 and C2 with
|C1| and |C2| addresses are merged, |C1| × |C2| edges are implicitly added to the graph.
Thus, every edge added using cross-chain clustering can potentially have large effects on
the resulting clustering and the privacy of users.

60

Figure 4.1: Two single-chain clusters on the BTC blockchain are merged into a cross-chain
cluster based on the link between A2 and A3 found in BCH.

A1 A2 A3 A4

A1 A2 A3

A1 A2 A3 A4

BCH

single-chain clustering

BTC

single-chain clustering

BTC ← BCH

cross-chain clustering

single-chain

cluster

single-chain

cluster

single-chain

cluster

cross-chain cluster

single-chain

cluster

Forked chains are a powerful clustering data source as both chains share a common
history. Thus, users who held coins before the fork automatically own coins on the forked
chain too. User behavior on forked chains, however, may differ widely: a generally privacy-
conscious user who carefully crafts transactions on one chain may perform privacy-harming
transactions on another, for example to cash-out all coins. In fact, privacy-harming
behavior has already been observed across forks of the Monero blockchain [24]. Cross-
chain clustering utilizes that addresses common to multiple forked chains may be spent
differently in order to identify additional links between address clusters. [6]

4.2 Implementation
The non-extended BlockSci version already comes with a single-chain clustering module,
as described in Section 2.3.4. We want to extend this module to support cross-chain
clustering. A core requirement for cross-chain address clustering is that addresses are
deduplicated across chains, i.e., inputs and outputs of all chains must refer to the
same addresses database. For example, the address identified by (P2PKH, ID 1) must
correspond to the same underlying address in all chains that should be clustered. The new
multi-chain mode of Section 3 supports this requirement: it deduplicates address data
across chains and stores it in a single database in the directory of the root chain. Thus,
the implementation of cross-chain clustering is straightforward, as shown in Figure 4.2
for a BTC-BCH clustering. As a first step, the multi-chain-aware clustering module
initializes the Union-Find structure with the addresses of all chains. Due to the shared
address database the addresses can be retrieved with a single lookup.

61

Figure 4.2: Implementation of cross-chain clustering using the new multi-chain mode.
Disk: BCH dir (bch/) Disk: BTC dir (btc/)

Program: Clusterer

A1 A2 A3 A4 A5 A6 A7 A8 A9 ...Union-Find data structure

TX is-coinjoin

no

yes

skip TX

TXInput: A2

Input: A4

Output

Disk: BTC clustering

Reverse index (addr. num. → cluster num.): A1 → 0, A2 → 1, A3 → 2, ...

Cluster data: (A1), (A2, A4), (A3), (A5), (A6), (A8), (A9)

Cluster index (cluster num. → first addr.): 0 → A1, 1 → A2, 2 → A3, ...

1
Initialize Union-Find structure

with addresses of all chains

Process BTC transactions

Link addresses

using multi-input heuristic

change heuristic

(optional)

Serialize clustering to disk

BCH-local data

TX data

Addresses (ScriptHeader)

Parser state

2

3 Process BCH transactions

BTC-local data

TX data

Addresses (ScriptHeader)

Parser state

Shared data

Addresses (Pubkey etc.)

Indices (RocksDB)

addr.

seen-on

BTC
no

yesskip address, e.g., A7

5

4

reduce clustering

to target chain (BTC)

only on BCH

62

Then the clustering module sequentially applies the heuristics to all chains. In our
example, it first clusters BTC (Step 2), followed by BCH (Step 3). Each additional chain
increases the number of transactions that are used for the clustering. Another way to
think about it is that the additional chain virtually extends the main chain, as shown in
Figure 4.3.

Figure 4.3: Post-fork BCH virtually extends the BTC chain with useful clustering data.

1 . . . 478,558

478,559

478,559

. . .

. . .

BCH post-fork

virtually extends BTC data

BTC post-forkBTC pre-fork

shared history

Thus, the actual clustering logic can remain the same for the single- and cross-chain
clustering module. After processing the transactions of both chains, the Union-Find
structure contains a clustering that includes addresses and links for both chains. Finally,
Steps 4 and 5 are responsible for serializing the clustering to disk. While Step 5 is equal
in single- and cross-chain mode, Step 4 performs necessary pre-processing in cross-chain
mode. Step 4 reduces the clustering to addresses that appear on the user-defined target
chain. All addresses that do not appear on the specified target chain are removed from
the clustering. This check can be performed via addresses’ ScriptHeader.txFirstSeen
property that stores when an address has first been seen on each chain, see B) in
Section 3.2.2. The target chain can be any of the chains that are clustered. This step
is required because the scope of the extended BlockSci version is to provide the known
single-chain interface, see Section 3.1.1. Having clusterings that contain addresses that
do not exist on the main chain would break the existing interface.

4.3 Usage
We add a new create_clustering_multichain method to BlockSci’s ClusterManager
class. It allows the user to create a cross-chain clustering given a list of chains, the target
chain, and an output directory. Listing 4.1 shows the usage of this new method.

63

Listing 4.1: Create cross-chain clustering for BTC and BCH, reduce to BTC.
import modules
import blocksci
from blocksci.cluster import ClusterManager

load chains
btc = blocksci.Blockchain("/btc/cfg.json")
bch = blocksci.Blockchain("/bch/cfg.json")

create cross-chain clustering
ccClusteringBtc = ClusterManager.create_clustering_multichain(

"/clustering", # clustering output path
[btc, bch], # chains to cluster, root chain first
blocksci.chain_id.bitcoin # target chain (to reduce to)

)

Listing 4.2 shows the output of Listing 4.1. The output messages reflect the cross-chain
clustering sequence that we outline in Figure 4.2: first the Union-Find structure is
initialized, then the Bitcoin transactions are processed, followed by the Bitcoin Cash
transactions; then the clustering is reduced to the target chain and serialized to disk.

Listing 4.2: Output of Listing 4.1 to create a cross-chain clustering.
Creating clustering based on 2 chain(s), reducing result to addresses seen in bitcoin

Preparing data structure for clustering: done

Clustering using bitcoin data (610696 blocks): done
Clustering using bitcoin_cash data (615796 blocks): done

Post-processing: resolving cluster nums for every address : done
Post-processing: remapping cluster IDs and reducing to bitcoin: done
Reduce result: excluded 43272428 out of 969971931 addresses (4.46%)

Saving cluster data to files
Finished clustering with 926699503 addresses in 561877635 clusters

4.4 Analysis: BTC-BCH Cross-Chain Clustering
4.4.1 Preliminaries
Terminology

Cross-chain address clustering is a new technique. Thus, we briefly introduce the
terminology we use throughout this section. A clustering is a graph of all unique addresses
of a blockchain. Every connected component of the graph is a cluster that represents the
addresses of one real-world entity1, i.e., a cluster contains one or more addresses. A merge
links two addresses based on heuristics, which results in the collapse/merge of the two

1Note that address clustering is heuristic and thus, contains false positives and negatives.

64

containing clusters. Given two clusters C1 and C2, a merge of any two addresses A1 ∈ C1
and A2 ∈ C2 has the same effect: the two clusters collapse. A clustering created with
data of one chain2 is a single-chain clustering. We use single-chain cluster to refer to a
cluster of a single-chain clustering. A clustering created with data of multiple chains3 is a
cross-chain clustering. We assume that each cross-chain clustering is reduced to a single
target chain before analysis, i.e., the clustering only contains addresses that appear on
the target chain. We use Bitcoin as the target chain and Bitcoin Cash as the additional
auxiliary chain throughout this section. Given a single- and a cross-chain clustering for
the same (target) chain, one can analyze which single-chain clusters collapsed in the
cross-chain clustering. Every such collapse represents one cross-chain merge, i.e., a merge
that a) has an effect in the resulting cross-chain clustering, and b) can not be found via
single-chain clustering. When two or more single-chain clusters are merged by cross-chain
merges, the result is a cross-chain cluster, i.e., every cross-chain cluster contains multiple
single-chain clusters.

Address Usage Across Forks

Each address may be used on different parts of the parent and/or forked chain: pre-fork,
post-fork, or both. We systematize the usage types of addresses across forked chains on
the example of Bitcoin and Bitcoin Cash in Figure 4.4.

Figure 4.4: Address usage types on forked chains [6]

pre-fork only

Fork
post-fork, BTC only

pre+post-fork, BTC only

pre+post-fork
BTC+BCH

pre+post-fork, BCH only

post-fork, BCH only

post-fork
BTC+BCH

Addresses that held coins before the fork may continue to be used on either (orange or
gray), or both chains (red). Orange addresses represent users that only touched their
pre-fork coins on post-fork BTC, while gray represents the same for post-fork BCH.
New addresses may be used after the fork on either chain (yellow or green), or start to
appear on both chains despite no pre-fork use (blue). These blue addresses indicate an

2For example, Bitcoin.
3For example, Bitcoin and Bitcoin Cash.

65

interesting user behavior that we discuss in Section 4.4.4. Addresses may also cease to
see use after the fork (brown). [6, in almost verbatim form]
The address usage types help to clarify the effectiveness of a cross-chain merge. A

cross-chain merge uses data from an auxiliary chain to merge two clusters that each
contain at least one address of the target chain. Given that BTC is the target chain
and BCH is the auxiliary chain, that corresponds to all clusters that have at least one
non-green address. All other clusters only contain green addresses, which do not appear
on the target chain, i.e., new post-fork BCH addresses. A merge of two such clusters is
ineffective4 from a cross-chain clustering perspective, as the addresses of both clusters
are removed in the reduction step. In other words, a cross-chain merge is effective if it
has an impact on the final, reduced target chain clustering.

4.4.2 Overview
We create a cross-chain clustering of Bitcoin (target) and Bitcoin Cash (auxiliary) as
of Dec 31, 2019, using the command in Listing 4.1. The output of the analysis library
in Listing 4.2 already provides some interesting insights. In total, Bitcoin and Bitcoin
Cash have 970 million addresses (all colors). In the reduction step 4.46% or 43 million of
those addresses are excluded from the clustering because they only appear on Bitcoin
Cash, i.e., green addresses. The remaining 926 million addresses appear on Bitcoin and
possibly on Bitcoin Cash (all but green addresses). The resulting cross-chain Bitcoin
clustering groups those 926 million addresses in 561 million clusters, i.e., every cluster
contains 1.65 addresses on average.
We now focus on the benefits of adding Bitcoin Cash by comparing the created

cross-chain clustering with a single-chain Bitcoin clustering. We first note that in the
single-chain Bitcoin clustering, over 350 million clusters contain only post-fork BTC
(yellow) addresses (approx. 465 million addresses). Cross-chain merges of these clusters
by including Bitcoin Cash data are impossible. Using BCH data to enhance the BTC
clustering, we observe 571,924 cross-chain merges. In other words, the cross-chain
clustering has 571,924 less clusters than the single-chain Bitcoin clustering5. Every merge
either links a) two single-chain clusters into a cross-chain cluster, or b) adds a single-chain
cluster to an existing cross-chain cluster. In total the cross-chain clustering has almost
200,000 cross-chain clusters that contain over 770,000 single-chain clusters. Figure 4.5
quantifies the number of cross-chain clusters per quantity of contained single-chain
clusters. [6]

4And thus, by our definition not a cross-chain merge.
5Each merge collapses two clusters into one and thus, reduces the number of clusters by one.

66

Figure 4.5: The number of cross-chain clusters and the addresses they contain, per
quantity of contained single-chain clusters; as of Dec 31, 2019.

2 3 4 5 6 7 8 9
10

-2
5

26
-5

0
51

-1
00

10
1-

50
0

50
1-

10
00

10
01

-1
00

00
49

14
9

Contained single-chain clusters per cross-chain cluster

101

103

105
Cr

os
s-

ch
ai

n
clu

st
er

s 11
73

36
38

75
3

17
14

6
88

88
49

14
31

31
19

51
14

39 46
70

55
6

16
9

11
1

12 15
1

Cross-chain clusters
Contained addresses

106

107

108

Co
nt

ai
ne

d
ad

dr
es

se
s

For example, 117,336 cross-chain clusters exist that are the result of two single-chain
clusters being merged. Some cross-chain clusters contain hundreds or thousands of
single-chain clusters. The right-most bars represent a supercluster that contains 49,149
single-chain clusters with a total of 70 million addresses. We conjecture that this cluster is
the result of false positives6. All cross-chain clusters together contain 30 million addresses,
excluding the 70 million addresses in the supercluster. These addresses are potentially
affected by cross-chain clustering and account for roughly 3% of all Bitcoin addresses. [6]

4.4.3 Time advantage
Some of the cross-chain merges that are found by including Bitcoin Cash may also
occur on Bitcoin at a later point in time. We quantify the time advantage the analyst
has from including Bitcoin Cash data by creating an early cross-chain clustering at t0
(Dec 31, 2017; 5 months after the BCH fork), and comparing it to four individual BTC
single-chain clusterings at t1,2,3,4, created with snapshots every 6 months until Dec 31,
2019.7 Figure 4.6 illustrates the analysis setup and shows first results.

6This assumption is backed by the fact that we could assign 34 conflicting tags, i.e., tags of unrelated
entities, to this cluster using the public GraphSense address tagpack [47].

7 t1 = 2018-06-30, t2 = 2018-12-31, t3 = 2019-06-30, t4 = 2019-12-31

67

Figure 4.6: Analysis setup to quantify the time advantage of including Bitcoin Cash data,
as of Dec 2017.

6 months

t

t0 t1 t2 t3 t4

cross-c. cl.

single-c. cl.

59 million

433,842

65 million

342,984

80 million

8,152

79 million

9,303

tfork

BTC

s.c.-merges

found at t
0

via c.-c. clust.

in total 283 million BTC single-chain merges

single-c. cl. single-c. cl. single-c. cl.

5 months 6 months 6 months 6 months

Aug 1, 2017 Dec 31, 2017 Jun 30, 2018 Dec 31, 2018 Jun 30, 2019 Dec 31, 2019

t

1.05 million

c.-c.-merges

Over 280 million merges are found in Bitcoin’s single-chain clustering during t0 and
t4. By using Bitcoin Cash as an auxiliary chain, 0.28% of those merges are found earlier
by an average of 8.9 months (Table 4.1). Bitcoin Cash yields a total of 1.05 million
additional cross-chain merges until t0. The majority (75.44%) of those merges are also
found in Bitcoin until Dec 2019, mostly within 12 months after t0 – an indication that
cross-chain produces a reliable time-advantage. This also implies that merges on BCH
can predict future merges on BTC.

Table 4.1: Time advantage using cross-chain clustering

Period Merges Found at t0 Time advantage
in BTC1 in BTC/BCH2 by BCH3 (months)

t0 − t1 59,409,904 433,842 (0.730%) 0-6m
t1 − t2 65,302,004 342,984 (0.525%) 6-12m
t2 − t3 79,627,009 8,152 (0.010%) 12-18m
t3 − t4 78,662,587 9,303 (0.012%) 18-24m

t0 − t4 282,996,504 794,281 (0.28%) avg. 8.9m
1: Merges using BTC single-chain clustering.

2: No. of merges in 1 that were found at t0 using cross-chain clustering.
3: Assuming the BCH merges were all found at t0.

68

4.4.4 Privacy Implications8

We have shown that the activity of a user on a forked chain may cause additional
cluster merges in the clustering of the parent chain. This leads to unintentional privacy
compromise. We conjecture that cash-outs are a particularly common and risky behavior
of users. A cash-out describes the action of transferring all owned coins to an exchange
to convert them to a fiat currency. This usually involves that all owned outputs are
referenced by inputs in a single cash-out transaction. Thus, all addresses of the user can
be linked using the multi-input heuristic. We try to detect such cash-outs and quantify
their privacy impact. In Figure 4.8 we show the address distribution between usage types
over time. A small but noticeable trend is a decline in the number of addresses that
existed pre-fork and initially had only been used on BCH (gray). This suggests that users
may have moved their funds on the BCH chain shortly after the fork, without moving
them on the BTC chain until many months after. We suspect that these may represent
users who decided to cash-out their funds on the BCH chain after the fork. [6]

Figure 4.7: Address usage types on forked chains [6]

pre-fork only

Fork
post-fork, BTC only

pre+post-fork, BTC only

pre+post-fork
BTC+BCH

pre+post-fork, BCH only
post-fork, BCH only

post-fork
BTC+BCH

Figure 4.8: The absolute number of addresses per category. For legend and color coding
see Figure 4.7. Note the difference in axis scales. [6]

30M
200M
400M
600M

Dec 2017 Jun 2018 Dec 2018 Jun 2019 Dec 2019
0M

10M

20M

30M

Snapshot date

Nu
m

be
r o

f a
dd

re
ss

es
(n

ot
e

di
ffe

re
nt

 a
xi

s s
ca

le
s)

8This section is almost verbatim from [6], esp. the 2nd paragraph and the “Address Reuse” subsection.

69

As in Section 4.4.3, we create an early cross-chain clustering for Dec 31, 2017, five
months after the BCH fork, and compare it to individual BTC single-chain clusterings
created every 6 months until Dec 31, 2019. Combining the BCH clustering with the
BTC clustering yields a total of 1.05 million additional cluster merges until Dec 31,
2017. 75.44% of those early merges on BCH occur on the BTC chain (on average, about
8.9 months after occurring on the BCH chain). The high degree of overlap provides
evidence that observing cluster merges on the BCH chain does indeed indicate that the
corresponding BTC clusters belong to the same entity. The remaining 24.56% represent
an upper bound of the unique additional privacy leakage for BTC users from their
behavior on BCH as of Dec 2019. With the rough heuristic that each cross-chain cluster
represents a distinct user, 99,500 users are still affected by this privacy leak over two
years after the fork: that is, it becomes possible to link their BTC addresses with each
other based on their BCH activity. [6, in verbatim form]

Address Reuse

Further investigating the different address use patterns, we observe the appearance of
previously unseen addresses on both chains after the fork, i.e., the blue addresses in
Figure 4.7. As of Dec 31, 2019, there are over one million such addresses, holding a total
of 360,000 btc (USD 2.7 billion) respectively 1.45 million bch (USD 303 million). Such
reuse may occur deliberately (e.g., when users import keys into wallets on both chains) or
unintentionally (e.g., when hierarchical deterministic wallets continue to generate similar
keys after the fork). Either way, it may not only lead to continued privacy compromise,
but also raises severe security concerns. To protect their keys, those users need to enforce
the same security policies on both chains, including a strict separation of keys between hot
and cold wallets (e.g., avoid importing a cold wallet key into a hot wallet), as compromise
of keys on one chain would allow the attacker to steal coins on all chains that share those
keys (cf. [48]). [6, in verbatim form]

4.5 Discussion
We proposed and implemented a novel clustering technique that uses data of multiple
chains: cross-chain address clustering. By including Bitcoin Cash data we identified over
570,000 additional cross-chain merges as of Dec 2019, i.e., merges that can not be found
using single-chain clustering. We conjecture that most users are not aware that their
behavior across chains can lead to privacy compromise. The effectiveness of cross-chain
clustering depends on the activity of users on the forked chains. In the case of Bitcoin
Cash, user interest in the fork may have been low, resulting in less usage and thus only
limited utility for cross-chain clustering. We suggest that cross-chain clustering may
become more useful when both forks see steady, continued use.
We also note that currently cross-chain clustering in BlockSci is limited to forked

chains only. However, in a preliminary analysis we discovered that users also reuse keys
across unrelated, i.e., non-forked, chains. For example, we found that 0.116% of public
keys used in Litecoin have also been used on Bitcoin or Bitcoin Cash. We plan to support
cross-chain clustering of non-forked chains in the future.

70

5 Conclusion

With the increasing frequency of blockchain forks in recent years, we have seen high
potential in the analysis of those forked chains together with their parent chain. However,
we have not found any publicly available tool that supports such cross-chain analyses.
Existing tools allow to analyze chains individually, but do not normalize data across
chains, as is needed to utilize the data relationships between forks. Thus, we decided to
extend the open-source blockchain analysis platform BlockSci to meet our requirements.

We added a new multi-chain mode to BlockSci that allows user-friendly and memory-
efficient cross-chain analyses of forked ledgers. The main contribution of this multi-chain
mode is the deduplication of addresses across forked chains. This allows us to provide
the user with addresses that are compatible between chains – a core requirement to
utilize the data relationships between forked chains in cross-chain analyses. It enables the
analyst to study user behavior across chains based on the activity of the same addresses
on multiple chains. We evaluated the resulting extension for correctness using a custom
integrity checker and found no errors. Our performance evaluation indicates that the
speed is mostly on par with the non-extended version of BlockSci. Overall, the new
multi-chain mode adds a robust and extensible cross-chain foundation to BlockSci. We
suggest several improvements as future work. A new cross-chain API is planned that
makes querying data across chains even more convenient and efficient. Further, we see
potential to optimize the performance of both modes.

We used the new multi-chain mode to implement a novel address clustering technique:
cross-chain address clustering. This technique uses the known heuristics and applies
them to multiple related chains to create an improved clustering. Using Bitcoin Cash to
improve a Bitcoin clustering we identified over 570,000 additional merges as of Dec 2019.
Our analysis indicates that certain user behavior, e.g., cashing out, can compromise
privacy across chains. We assume that more privacy-harming behavior across forked
chains exists and suggest future work in this field. Moreover, preliminary results indicate
that cross-chain clustering may even be effective across unrelated chains, e.g., when users
import the same private keys in wallets of different chains. We conjecture most users are
not aware that their actions across chains can negatively affect their privacy, and that
importing the same private keys to multiple wallets may put their funds at risk.
Cross-chain address clustering is just one of many novel cross-chain analyses. We

expect that cross-chain investigations will become more prevalent in the future. We see
a trend towards multi-layer solutions in the DLP ecosystem, i.e., different blockchain
systems that build on each other and interoperate. If this trend continues we expect an
increasing demand for analysis techniques and tools that efficiently extract information
across chains. We hope our contribution enables new types of analyses and sparks future
work in this area.

71

List of Abbreviations

API application programming interface. 2, 31, 34–36, 47–49, 56, 58, 59, 71

BCH Bitcoin Cash. 1, 2, 34, 35, 43, 45, 48–51, 54–57, 59–61, 63–70, 73, 74

BIP Bitcoin Improvement Proposal. 12, 58

BTC Bitcoin. 1, 2, 34, 35, 40, 43, 45, 48–51, 56, 57, 59–61, 63–70, 73, 74

DLP Distributed Ledger Protocol. 4, 5, 7, 8, 11, 12, 71

DLPs Distributed Ledger Protocols. 4–9, 11, 14, 19

ETH Ethereum. 8

ETL extract, transform, load. 22

FR functional requirements. 57, 58

JSON JavaScript Object Notation. 23, 29, 30

NFR non-functional requirements. 57, 58

P2PK Pay-to-Public-Key. 9, 16, 17, 27, 40, 42, 72, 74

P2PK(H) See P2PK and P2PKH. 24, 28, 31, 42

P2PKH Pay-to-Public-Key-Hash. 8, 16, 17, 27, 42, 51, 61, 72, 74

P2SH Pay-to-Script-Hash. 12, 16, 17, 24, 27, 28, 31, 42, 58, 59, 74

P2WPKH Pay-to-Witness-Public-Key-Hash. 58, 59

RFC Request for Comments. 35

RPC Remote Procedure Call. 29, 30

SegWit Segregated Witness. 24, 58

UTXO Unspent Transaction Output. 4, 8–10, 13, 14, 23, 34, 40, 46, 73

UTXOs Unspent Transaction Outputs. 9, 13, 14, 30, 34, 38, 46, 58, 73

72

List of Figures

2.1 A blockchain represents a ordered set of cryptographically linked blocks. . 7
2.2 A sample flow of coins using the UTXO model. 10
2.3 Illustration of a fork. 10
2.4 Pre-fork UTXOs can be spent on both the parent and the forked chain. . 14
2.5 Data format of Bitcoin [8]. Dashed lines represent links between blocks

and from inputs to the output they spent. 15
2.6 Step-by-step execution of a simple script. [8, p. 135] 15
2.7 Bitcoin combines the input and output scripts to validate transactions. . . 16
2.8 Bitcoin forks with a market cap. over $ 100 million as of May 9, 2020 [12]. 18
2.9 Using the multi-input heuristic to link addresses. 20
2.10 Overview of BlockSci’s Architecture . 24
2.11 BlockSci’s data layout that is optimized for analysis 26
2.12 Parser sequence to convert raw blockchain data to the optimized layout . 29
2.13 BlockSci’s mechanism to check whether an address has been seen before. . 30
2.14 BlockSci’s single-chain clustering . 33

3.1 Overview of all required changes per component 36
3.2 Required changes to the data layout of BlockSci. The colors represent

additions (green) and deletions (red). 39
3.3 All address type structs (here: Pubkey) are split in two structs to separately

store shared and chain-specific data. 41
3.4 The sequence of the parser’s new multi-chain mode. 44
3.5 Correctness evaluation setup. Solid lines represent the creation of parsings,

and dashed the comparisons of those. 51

4.1 Two single-chain clusters on the BTC blockchain are merged into a cross-
chain cluster based on the link between A2 and A3 found in BCH. 61

4.2 Implementation of cross-chain clustering using the new multi-chain mode. 62
4.3 Post-fork BCH virtually extends the BTC chain with useful clustering data. 63
4.4 Address usage types on forked chains [6] 65
4.5 The number of cross-chain clusters and the addresses they contain, per

quantity of contained single-chain clusters; as of Dec 31, 2019. 67
4.6 Analysis setup to quantify the time advantage of including Bitcoin Cash

data, as of Dec 2017. 68
4.7 Address usage types on forked chains [6] 69
4.8 The absolute number of addresses per category. For legend and color

coding see Figure 4.7. Note the difference in axis scales. [6] 69

73

List of Listings

2.1 Pay-to-Public-Key (P2PK) script . 17
2.2 Pay-to-Public-Key-Hash (P2PKH) script 17
2.3 Pay-to-Script-Hash (P2SH) script . 17
2.4 Multi-signature script . 17
2.5 Sample query to retrieve the average transaction fee in Mar 2019. 23
2.6 Sample BlockSci config file for Bitcoin . 25
2.7 Creating and accessing an address clustering using the Python interface . 33

3.1 Chain config file of Bitcoin Cash in a multi-chain configuration 38
3.2 BTC config /btc/cfg.json . 48
3.3 BCH config /bch/cfg.json . 48
3.4 Creating a parsing using the new multi-chain mode 49
3.5 Loading the chains of a multi-chain parsing using the Python interface . . 50

4.1 Create cross-chain clustering for BTC and BCH, reduce to BTC. 64
4.2 Output of Listing 4.1 to create a cross-chain clustering. 64

74

List of Tables

2.1 Persistency of soft and hard forks based on the allocation of consensus-
relevant resources rnew and rold, i.e., the hash rate. White blocks are
mined according to the old rules, and blue blocks according to the new
rules. [7] . 13

2.2 Bitcoin forks listed on CoinMarketCap [12] 18

3.1 Storage location for parser output data based on the data type 46
3.2 Result of the integrity check to evaluate correctness. 51
3.3 Tests to evaluate the runtime of the analysis library 53
3.4 Results of the runtime evaluation for the analysis library 54
3.5 Results of the runtime evaluation for the parser 56
3.6 Fulfillment of the functional and non-functional requirements in Section 3.1 57

4.1 Time advantage using cross-chain clustering 68

75

References

[1] Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, and Steven
Goldfeder. Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction.
Princeton University Press, 2016.

[2] Malte Möser and Rainer Böhme. The price of anonymity: Empirical evidence from
a market for Bitcoin anonymization. Journal of Cybersecurity, 3(2):127–135, 2017.

[3] Malte Möser and Rainer Böhme. Trends, tips, tolls: A longitudinal study of Bitcoin
transaction fees. In International Conference on Financial Cryptography and Data
Security, pages 19–33. Springer, 2015.

[4] Harry Kalodner, Steven Goldfeder, Alishah Chator, Malte Möser, and Arvind
Narayanan. BlockSci: Design and applications of a blockchain analysis platform.
arXiv preprint arXiv:1709.02489, 2017.

[5] Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Damon
McCoy, Geoffrey M. Voelker, and Stefan Savage. A fistful of bitcoins: Characterizing
payments among men with no names. In Proceedings of the 2013 Conference on
Internet Measurement Conference - IMC ’13, pages 127–140, Barcelona, Spain, 2013.
ACM Press.

[6] Harry Kalodner, Malte Möser, Kevin Lee, Steven Goldfeder, Martin Plattner, Alishah
Chator, and Arvind Narayanan. BlockSci: Design and applications of a blockchain
analysis platform. In 29th USENIX Security Symposium 2020. (“in minor revisions”
as of Jun 12, 2020), 2020.

[7] Fabian Schär. Blockchain Forks: A Formal Classification Framework and Persistency
Analysis. Working paper, February 2020.

[8] Andreas M Antonopoulos. Mastering Bitcoin: Unlocking Digital Cryptocurrencies.
O’Reilly Media, Inc., 2014.

[9] Yujin Kwon, Hyoungshick Kim, Jinwoo Shin, and Yongdae Kim. Bitcoin vs. Bitcoin
Cash: Coexistence or Downfall of Bitcoin Cash? In 2019 IEEE Symposium on
Security and Privacy (SP), pages 935–951, May 2019.

[10] GitHub — Bitcoin Cash Specification: UAHF Technical Specification.
https://github.com/bitcoincashorg/bitcoincash.org/blob/master/spec/
uahf-technical-spec.md, July 2017. (accessed 2020-06-06).

[11] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. October 2008.

76

https://github.com/bitcoincashorg/bitcoincash.org/blob/master/spec/uahf-technical-spec.md
https://github.com/bitcoincashorg/bitcoincash.org/blob/master/spec/uahf-technical-spec.md

[12] CoinMarketCap — Cryptocurrency Market Capitalizations. https://
coinmarketcap.com/. (accessed 2020-05-08).

[13] Bitcoin Wiki — Bitcoin Script. https://en.bitcoin.it/wiki/Script. (accessed
2020-05-03).

[14] Forkdrop.io — Bitcoin Forks, Airdrops and Exchange Directory. https://
forkdrop.io/. (accessed 2019-05-06).

[15] Malte Möser, Kyle Soska, Ethan Heilman, Kevin Lee, Henry Heffan, Shashvat
Srivastava, Kyle Hogan, Jason Hennessey, Andrew Miller, Arvind Narayanan, and
Nicolas Christin. An Empirical Analysis of Traceability in the Monero Blockchain.
Proceedings on Privacy Enhancing Technologies, 2018(3):143–163, June 2018.

[16] George Kappos, Haaroon Yousaf, Mary Maller, and Sarah Meiklejohn. An Empirical
Analysis of Anonymity in Zcash. In 27th USENIX Security Symposium 2018, pages
463–477, 2018.

[17] Marie Vasek and Tyler Moore. There’s No Free Lunch, Even Using Bitcoin: Tracking
the Popularity and Profits of Virtual Currency Scams. In Rainer Böhme and Tatsuaki
Okamoto, editors, Financial Cryptography and Data Security, Lecture Notes in
Computer Science, pages 44–61, Berlin, Heidelberg, 2015. Springer.

[18] Danny Yuxing Huang, Maxwell Matthaios Aliapoulios, Vector Guo Li, Luca Inv-
ernizzi, Elie Bursztein, Kylie McRoberts, Jonathan Levin, Kirill Levchenko, Alex C.
Snoeren, and Damon McCoy. Tracking Ransomware End-to-end. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 618–631, May 2018.

[19] Massimo Bartoletti and Livio Pompianu. An Analysis of Bitcoin OP_RETURN
Metadata. In Michael Brenner, Kurt Rohloff, Joseph Bonneau, Andrew Miller,
Peter Y.A. Ryan, Vanessa Teague, Andrea Bracciali, Massimiliano Sala, Federico
Pintore, and Markus Jakobsson, editors, Financial Cryptography and Data Secu-
rity, Lecture Notes in Computer Science, pages 218–230, Cham, 2017. Springer
International Publishing.

[20] Elli Androulaki, Ghassan O Karame, Marc Roeschlin, Tobias Scherer, and Srdjan
Capkun. Evaluating user privacy in bitcoin. In International Conference on Financial
Cryptography and Data Security, pages 34–51. Springer, 2013.

[21] Maurice Herlihy. Atomic cross-chain swaps. In Proceedings of the 2018 ACM
Symposium on Principles of Distributed Computing, pages 245–254. ACM, 2018.

[22] Michael Borkowski, Christoph Ritzer, Daniel McDonald, and Stefan Schulte. Caught
in Chains: Claim-First Transactions for Cross-Blockchain Asset Transfers. TU Wien:
Technische Universität Wien, Tech. Rep, 2018.

[23] Martin Harrigan, Lei Shi, and Jacob Illum. Airdrops and Privacy: A Case Study in
Cross-Blockchain Analysis. In 2018 IEEE International Conference on Data Mining
Workshops (ICDMW), pages 63–70. IEEE, 2018.

77

https://coinmarketcap.com/
https://coinmarketcap.com/
https://en.bitcoin.it/wiki/Script
https://forkdrop.io/
https://forkdrop.io/

[24] Abraham Hinteregger and Bernhard Haslhofer. An Empirical Analysis of Monero
Cross-Chain Traceability. In International Conference on Financial Cryptography
and Data Security, pages 150–157. Springer, 2019.

[25] Jeremy Rubin. GitHub — BTCSpark. https://github.com/JeremyRubin/
BTCSpark. (accessed 2020-05-10).

[26] znort987. GitHub — blockparser. https://github.com/znort987/blockparser.
(accessed 2020-05-10).

[27] Michele Spagnuolo, Federico Maggi, and Stefano Zanero. Bitiodine: Extracting
intelligence from the bitcoin network. In International Conference on Financial
Cryptography and Data Security, pages 457–468. Springer, 2014.

[28] Michael Egger. GitHub — rusty-blockparser. https://github.com/gcarq/rusty-
blockparser. (accessed 2020-05-10).

[29] Bernhard Haslhofer, Roman Karl, and Erwin Filtz. O Bitcoin Where Art Thou?
Insight into Large-Scale Transaction Graphs. In SEMANTiCS (Posters, Demos,
SuCCESS), 2016.

[30] Neo4j Graph Platform. https://neo4j.com/. (accessed 2020-05-10).

[31] Stéphane Traumat. GitHub — blockchain2graph. https://github.com/straumat/
blockchain2graph. (accessed 2020-06-03).

[32] Chainalysis — The Blockchain Analysis Company. https://www.chainalysis.com/.
(accessed 2020-05-10).

[33] Elliptic Enterprises Limited — Preventing and detecting criminal activity in cryp-
tocurrencies. https://www.elliptic.co. (accessed 2020-05-10).

[34] CipherTrace, Inc. — The Blockchain Security Company. https://
ciphertrace.com/. (accessed 2020-05-10).

[35] Chainalysis — Graphing Beyond Bitcoin: Tracking the Flow of Funds for Multiple
Cryptocurrencies. https://go.chainalysis.com/multicoin.html. (accessed 2020-
05-10).

[36] Bitcoin Wiki — CoinJoin. https://en.bitcoin.it/wiki/CoinJoin. (accessed
2020-05-15).

[37] BlockSci Version 0.6 Documentation (without multi-chain mode). https://
mplattner.github.io/BlockSci/thesis/0.6-noext/. (accessed 2020-06-06).

[38] Martin Plattner. GitHub — mplattner/BlockSci. https://github.com/mplattner/
BlockSci. (accessed 2020-05-17).

[39] Facebook Open Source. RocksDB: A persistent key-value store. http://
rocksdb.org/. (accessed 2020-05-11).

78

https://github.com/JeremyRubin/BTCSpark
https://github.com/JeremyRubin/BTCSpark
https://github.com/znort987/blockparser
https://github.com/gcarq/rusty-blockparser
https://github.com/gcarq/rusty-blockparser
https://neo4j.com/
https://github.com/straumat/blockchain2graph
https://github.com/straumat/blockchain2graph
https://www.chainalysis.com/
https://www.elliptic.co
https://ciphertrace.com/
https://ciphertrace.com/
https://go.chainalysis.com/multicoin.html
https://en.bitcoin.it/wiki/CoinJoin
https://mplattner.github.io/BlockSci/thesis/0.6-noext/
https://mplattner.github.io/BlockSci/thesis/0.6-noext/
https://github.com/mplattner/BlockSci
https://github.com/mplattner/BlockSci
http://rocksdb.org/
http://rocksdb.org/

[40] Michael Kerrisk. The Linux Programming Interface: A Linux and UNIX System
Programming Handbook. No Starch Press, San Francisco, 2010.

[41] Wenzel Jakob. GitHub — dset. https://github.com/wjakob/dset. (accessed
2020-05-13).

[42] Scott Bradner. Key words for use in RFCs to Indicate Requirement Levels. https:
//tools.ietf.org/html/rfc2119. (accessed 2020-05-22).

[43] Google. GitHub — sparsehash. https://github.com/sparsehash/sparsehash.
(accessed 2020-04-16).

[44] Luke Dashjr. GitHub — BIP115: Generic anti-replay protection using Script.
https://github.com/bitcoin/bips/blob/master/bip-0115.mediawiki, Septem-
ber 2016. (accessed 2020-04-23).

[45] BlockSci Version 0.6 Documentation (with multi-chain mode). https://
mplattner.github.io/BlockSci/thesis/0.6-ext/. (accessed 2020-06-06).

[46] Eric Lombrozo, Johnson Lau, and Peter Wuille. GitHub — BIP141: Segregated Wit-
ness (Consensus layer). https://github.com/bitcoin/bips/blob/master/bip-
0141.mediawiki, December 2015. (accessed 2020-06-06).

[47] Austrian Institute Of Technology. GitHub — graphsense-tagpacks. https://
github.com/graphsense/graphsense-tagpacks. (accessed 2020-06-03).

[48] CCN.com — $3.2 Million Theft: Bitcoin Gold Wallet Scam Sees Fraudsters Steal
Users’ Private Keys. https://www.ccn.com/bitcoin-gold-wallet-scam-nets-
fraudsters-3-2-million-after-stealing-users-private-keys/, November
2017. (accessed 2020-05-26).

79

https://github.com/wjakob/dset
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://github.com/sparsehash/sparsehash
https://github.com/bitcoin/bips/blob/master/bip-0115.mediawiki
https://mplattner.github.io/BlockSci/thesis/0.6-ext/
https://mplattner.github.io/BlockSci/thesis/0.6-ext/
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://github.com/graphsense/graphsense-tagpacks
https://github.com/graphsense/graphsense-tagpacks
https://www.ccn.com/bitcoin-gold-wallet-scam-nets-fraudsters-3-2-million-after-stealing-users-private-keys/
https://www.ccn.com/bitcoin-gold-wallet-scam-nets-fraudsters-3-2-million-after-stealing-users-private-keys/

	Introduction
	Motivation
	Research Approach
	Outline of Contents

	Background
	Distributed Ledger Protocols
	Fundamentals
	Transaction Model
	Forks
	Bitcoin

	Blockchain Data Analysis
	Address Clustering
	Cross-Chain Analyses
	Existing Tools

	BlockSci: High-Performance Blockchain Analysis Tool
	Config File
	Data Layout
	Parser
	Analysis Library

	Generalizing BlockSci to Forked Ledgers
	Requirements
	Scope & Contribution
	Functional Requirements
	Non-Functional Requirements

	Required Changes
	Config File
	Data Layout
	Parser
	Analysis Library

	Usage
	Evaluation
	Correctness
	Runtime Performance
	Backwards Compatibility

	Discussion

	Application: Cross-Chain Address Clustering
	Introduction
	Implementation
	Usage
	Analysis: BTC-BCH Cross-Chain Clustering
	Preliminaries
	Overview
	Time advantage
	Privacy Implications

	Discussion

	Conclusion
	List of Abbreviations
	List of Figures
	List of Listings
	List of Tables
	References

